簡易檢索 / 詳目顯示

研究生: 陳盈佑
Ying-Yu Chen
論文名稱: IEEE 802.16e 之省電機制
An Efficient Energy Saving Mechanism for IEEE 802.16eWireless MANs
指導教授: 陳志成
Jyh-Cheng Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 47
中文關鍵詞: 省電機制IEEE 802.16e無線中國餘式定理
外文關鍵詞: Energy Saving Mechanism, IEEE 802.16e, Wireless, Chinese Remainder Theorem
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在可移動的環境中,如何節省移動裝置的電力來增加它的持續使用時間一直是個重要的議題。 在這篇文章中,我們針對 IEEE 802.16e 中 Type II 的 Power Saving Classes 提出一個節省電力消耗的方法,稱為Maximum Unavailability Interval (MUI)。 當移動裝置處於Unavailability Interval中時,移動裝置可以將它的無線電收發器 (Transceiver) 關閉來節省電力並延長使用時間。
    我們把中國餘式定理 (Chinese Remainder Theorem) 應用在我們提出的MUI中來計算出最大的Unavailability Interval,藉此可節省最多的電力。 IEEE 802.16e的標準中,Type II 的 Power Saving Classes 定義了三個參數: (1) sleep window, (2) listening window, (3) start frame number。 第一和第二的參數會根據 Power Saving Class 中包含連線的服務品質 (QoS,Quality of Service) 的要求來設定。 我們提出的MUI中,只會動態的調整第三個參數,也就是Power Saving Class啟動的時間,所以不會影響到服務品質的要求。 由於MUI是用於調節器 (Scheduler)中,而調節器不在標準的定義範圍,所以沒有變動到 IEEE 802.16e 標準中定義的任何程序,是完全相容於IEEE 802.16e。
    我們更進一步提出 Table-based Algorithm 來降低直接使用中國餘式定理的計算複雜度。 最後,我們用分析和模擬來驗證三種方法的效能,此三種方法包括:暴力法,直接使用中國餘式定理的方法,和使用Table-base Algorithm的方法。 分析和模擬都顯示出Table-base Algorithm在效能上優於另外兩種方法。


    In mobile environment, how to extend the life time of mobile devices is an important issue. This thesis presents an energy conservation scheme, Maximum Unavailability Interval (MUI), to improve the energy efficiency for Power Saving Class of Type II in IEEE 802.16e. By applying the Chinese Remainder Theorem, the proposed MUI is guaranteed to find the maximum Unavailability Interval, during which the transceiver of a mobile station can be powered down. In Type II, there are three parameters: (1) sleep window, (2) listening window, and (3) start frame number. The proposed MUI only dynamically adjusts one parameter, the start frame number. The other two parameters are set according to Quality of Service (QoS) requirements of the connections. Our proposed scheme will not change them. In addition,
    our proposed scheme is fully compatible with 802.16e standard. We also propose a new table-based algorithm to reduce the computational complexity when solving the Chinese
    Remainder Theorem problem. Simulation and analysis have been conducted to evaluate and compare the performance of the proposed MUI using Chinese Remainder Algorithm and Table-based Algorithm with a brute force algorithm. Both simulation and analysis show that the proposed MUI with table-based algorithm performs better than the other two schemes.

    Acknowledgments ... iii Abstract ... iv List of Tables ... vii List of Figures ... viii 1. Introduction ... 1 1.1. IEEE 802.16 and IEEE 802.16e ... 1 1.2. Sleep Mode in IEEE 802.16e ... 2 1.3. Related Work ... 6 1.4. Motivations and Observations on Power Saving Classes of Type II ... 9 2. Proposed Algorithm ... 15 2.1. Chinese Remainder Theorem ... 15 2.2. Proposed Maximum Unavailability Interval (MUI) ... 18 2.3. Table-based Algorithm ... 25 2.3.1. Table Construction ... 25 2.3.2. Table Consulting ... 28 2.3.3. The Table-based Algorithm ... 29 3. Analysis of Computational Complexity ... 35 3.1. Analysis of the Brute Force Algorithm ... 35 3.2. Analysis of MUI Using Chinese Remainder Algorithm ... 37 3.3. Analysis of MUI Using Table-based Algorithm ... 37 3.4. Summary of Time Complexity ... 37 4. Experiments on Time Complexity ... 39 4.1. Experimental Environment ... 39 4.2. Experimental Methodology ... 40 4.3. Experimental Results ... 40 5. Conclusion ... 45 Bibliography ... 46

    [1] “Part 16: Air Interface for Fixed Broadband Wireless Access Systems.” IEEE Std 802.16-2004, Oct. 2004.
    [2] “Part 3: Carrier sense multiple access with collision detection (csma/cd) access method and physical layer specifications.” IEEE Std 802.3-2005, 2005.
    [3] “Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.”IEEE Std 802.11-1999, 1999.
    [4] “Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems-Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands.” IEEE Std 802.16e-2005, Feb. 2006.
    [5] J.-B. Seo, S.-Q. Lee, N.-H. Park, H.-W. Lee, and C.-H. Cho, “Performance analysis of sleep mode operation in IEEE 802.16e,” in Vehicular Technology Conference, 2004,
    2004.
    [6] Y. Xiao, “Energy Saving Mechanism in the IEEE 802.16eWireless MAN,” IEEE Commun. Lett., vol. 9, pp. 595–597, July 2005.
    [7] Y. Xiao, “Performance Analysis of an Energy Saving Mechanism in the IEEE 802.16e Wireless MAN,” in Proceedings of IEEE CCNC, Jan. 2006.
    [8] Y. Zhang and M. Fujise, “Energy Management in the IEEE 802.16e MAC,” IEEE Commun. Lett., vol. 10, pp. 311–313, Apr. 2006.
    [9] K. Han and S. Choi, “Performance Analysis of Sleep Mode Operation in IEEE 802.16e Mobile Broadband Wireless Access Systems,” in Vehicular Technology Conference,
    2006.
    [10] J. Shi, G. Fang, Y. Sun, J. Zhou, Z. Li, and E. Dutkiewicz, “Improving Mobile Station Energy Efficiency in IEEE 802.16e WMAN by Burst Scheduling,” in globecom, (San
    Francisco, CA, USA), Nov. 2006.
    [11] J. Jang, K. Han, and S. Choi, “Adaptive Power Saving Strategies for IEEE 802.16e Mobile Broadband Wireless Access,” in Asia-Pacific Conference, Aug. 2006.
    [12] L. Kong and D. H. Tsang, “Performance Study of Power Saving Classes of Type I and II in IEEE 802.16e,” in Local Computer Networks, 2006.
    [13] C. Ding, D. Pei, and A. Salomaa, Chinese Remainder Theorem - Applications in Computing, Coding, Cryptography. World Scientific, 1996.
    [14] I. Niven, H. S. Zuckerman, and H. L. Montgomery, The Theory of Numbers. Wiley, 1991.
    [15] R. Crandall and C. Pomerance, Prime Numbers - A Computational Perspective. Springer, 2001.
    [16] E. Bach and J. Shallit, Algorithmic Number Theory. Massachusetts Institute of Technology, 1996.
    [17] K. H. Rosen, Discrete Mathematics and Its Applications. McGraw-Hill, 2003

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE