簡易檢索 / 詳目顯示

研究生: 孫永明
論文名稱: 混成燃料電池車超級電容器動態分析與整車動力控制系統設計
Supercapacitor Dynamic Analysis and Design of Power Control System for Hybrid Fuel Cell Vehicles
指導教授: 洪哲文
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 67
中文關鍵詞: 超級電容器燃料電池交流阻抗分析
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的為研究燃料電池結合及輔助動力超級電容器之混成動力車動態模式。以交流阻抗分析法推導驗證超級電容器之模式並設計控制器做燃料電池系統之最佳能量管理控制。
    超級電容器部份,本論文建立超級電容器之等效電路模式,並與充放電實驗相互驗證,擷取超級電容器之系統參數,考慮超級電容器本身自放電效應,與在不同環境溫度下的影響,本論文建立完整超級電容器系統動態模式,模擬超級電容器實際工作情形。
    燃料電池方面,以熱力學及電化學公式,建立質子交換膜燃料電池(PEMFC)本體與周邊各子系統的模式,並分析燃料電池系統工作效率、溫度因素、濕度影響與空氣壓縮機的動態等模式。
    整車能量管理系統策略上,本論文設計模糊控制器提升相同電流密度下之整車系統效率,並以狀態流(state flow)方式設計出一套在不同電流密度下最佳動力分配策略。最後以ECE40與FTP75之行車型態,模擬並評估純燃料電池電動車與混成燃料電池(加超級電容)電動車之性能表現,並詳驗混成燃料電池電動車之各個動力源能量輸出輸入與效率關係。


    摘要 II 致謝 III 目錄 IV 圖目錄 VI 表目錄 VII 符號列表 VIII 第一章 緒論 1 1.1 前言 1 1.2 研究目的與方法 2 1.3 文獻回顧 3 1.3.1 超級電容器與交流阻抗分析 3 1.3.2 PEMFC與能量管理 4 第二章 超級電容器原理與模式建立 6 2.1 交流阻抗分析原理 6 2.2 等效電路 9 2.3 超級電容器動態模式 12 2.4 超級電容器量測實驗 14 第三章 燃料電池車動態模式建立 19 3.1 質子交換膜燃料電池 19 3.1.1 理想燃料電池電化學反應輸出電壓 19 3.1.2 活化能損失(Activation Loss) 21 3.1.3 離子濃度損失(Concentration Loss) 21 3.1.4 歐姆損失(Ohmic Loss) 23 3.1.5 燃料電池組實際電壓輸出 25 3.2 燃料電池系統 25 3.2.1 氫氣管路 27 3.2.2 空氣管路 27 3.2.3 水循環 27 3.2.4 電力輸出與控制 28 3.2.5 水動態方程式 28 3.2.6 系統效率 30 3.3 車輛傳動與系統整合 31 3.3.1 直流無刷馬達 31 3.3.2 傳動機構與車體系統 32 第四章 結果與討論 34 4.1 超級電容器模式 34 4.1.1 交流阻抗分析 34 4.1.2 超級電容器模式建立與驗證 42 4.2 PEM燃料電池模式 44 4.2.1 燃料電池堆模式與測試 44 4.2.2 燃料電池系統模式與測試 46 4.3 混成動力車模擬 49 4.3.1 純燃料電池車行車型態ECE40模擬 49 4.3.2 混成動力車行車型態ECE40模擬 53 4.3.3 混成動力車行車型態FTP模擬 59 第五章 結論與未來工作建議 62 5.1 結論 62 5.2 未來工作建議 63 參考文獻 64

    [1] Kötz R., Carlen M., “Principles and applications of electrochemical capacitors,” Electrochimica Acta, Vol. 45, pp. 2483-2498, 2000.
    [2] Buller S., Karden E., Kok D., De Doncker, R.W., “Modeling the dynamic behavior of supercapacitors using impedance spectroscopy”, Industry Applications, IEEE Transactions on Vol. 38, pp. 1622-1626, Nov.-Dec., 2002.
    [3] Kötz R., Hahn M., Gallay R., “Temperature behavior and impedance fundamentals of supercapacitors”, Journal of Power Sources, Vol. 154, pp. 550-555, 2006.
    [4] Lam L. T., Louey R., Haigh N. P., Lim O. V., Vella D. G., Phyland C.G., Vu L.H., Furukawa J., Takada T., Monma D., Kano T., ” VRLA Ultrabattery for high-rate partial-state-of-charge operation,” Journal of Power Sources, Vol. 174, pp. 16-29, 2007.
    [5] Pukrushpan J. T., “Modeling and Control of PEM Fuel Cell Systems and Fuel Processors,” PhD Dissertation, Dept. of Mechanical Engineering in the University of Michigan, 2003.
    [6] Maher A.R, Sadiq Al-Baghdadi, “Modeling of proton exchange membrane fuel cell performance based on semi-empirical equations,” Renewable Energy, Vol. 30, pp. 1587-1599, 2005.
    [7] Pukrushpan J. T., Stefanopoulou A. G., Varigonda S., Eborn J., Haugstetter C., “Control-oriented model of fuel process or hydrogen generation in fuel cell applications,” Control Engineering Practice, Vol. 14, pp. 277-293, 2006.
    [8] Karnik A. Y., Stefanopoulou A. G., Sun J., “Water equilibria and management using a two-volume model of a polymer electrolyte fuel cell,” Journal of Power Sources, Vol. 164, pp. 590-605,2007.
    [9] Feroldi D., Serra M., Riera J., “Performance improvement of a PEMFC system controlling the cathode outlet air flow,” Journal of Power Sources, Vol. 169, pp. 205-212,2007.
    [10] Zenith F., Skogestad S., “Control of fuel cell power output,” Journal of Process Control 17 (2007) 333-347.
    [11] Stefanopoulou A. G., Suh K. W., “Mechatronics in fuel cell systems,” Control Engineering Practice, Vol. 15, pp. 277-289, 2007.
    [12] Blomen, L.J.M.J., Mugerwa, M.N., “Fuel Cell Systems,” Plenum Press, 1993.
    [13] James Larminie and Andrew Dicks, “Fuel Cell Systems Explained,” John Wilet & Sons Inc, West Sussex, England, 2000.
    [14] Marr, C., Li, X., “An Engineering Model of Proton Exchange Membrane Fuel Cell Performance,” A Interdisciplinary Journal of Physical on Engineering Sciences, Vol. 50, pp. 190-200, 1998.
    [15] Ronald F. M., John, C. A., Michel, A. I., etc…“Development and Application of A Generalised Steady-State Electrochemical Model of A PEM Fuel Cell,” Journal of power Sources, Vol. 86, pp. 173-180, 2000.
    [16] Jiang R., Chu D., “Stack design and performance of polymer electrolyte membrane fuel cells,” International Journal of Hydrogen Energy, Vol. 93, pp. 25-31, 2001.
    [17] Barbir F., “PEM Fuel Cells Theory and Practice,” Elsevier Academic Press, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE