研究生: |
俞天峻 Tian-Jun Yu |
---|---|
論文名稱: |
以導氧離子材料擔載鎳觸媒行甲烷蒸汽重組反應之研究 Study of Steam Reforming of Methane over Oxygen-Ion Conducting Material Supported Nickel Catalyst |
指導教授: |
黃大仁
Ta-Jen Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 導氧離子材料 、甲烷蒸汽重組 、SDC |
外文關鍵詞: | Steam Reforming of methane |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是以不同導氧離子材料及α-Al2O3為擔體,含浸鎳金屬作為觸媒在低CH4/H2O=1的條件下進行甲烷蒸汽重組反應。其中導氧離子材料為Gd2O3-doped CeO2(G10%DC90%)和Sm2O3-doped CeO2(S10%DC90%)。利用BET及二氧化碳解離吸附實驗來分析擔體SDC及GDC的表面積及導氧離子性的大小。而結果發現表面積數值相近,故不考慮其對反應性活性影響;而不同導氧離子材料由於表面氧空洞數目及導氧離子效果的不同,晶格氧的產生也有所差異。溫度達到500℃後導氧離子材料表面氧空洞吸附的晶格氧會有往內部移動的效應。以Ni(2wt%)/S10DC90、Ni(2wt%)/G10DC90為觸媒,在不同溫度下分別通入水汽/二氧化碳 前處理之甲烷積碳去積碳實驗,實驗結果發現水汽主要吸附在擔體的氧空洞上,而二氧化碳同時可吸附在鎳觸媒及擔體氧空洞上。水汽前處理當溫度從450℃升到500℃時有晶格氧往內部移動的現象,而Ni/S10DC90不論是二氧化碳前處理或是水汽前處理,積碳均比Ni/G10DC90少。在H2O/CH4=1的比例下進行20小時甲烷蒸汽重組反應活性實驗,結果顯示Ni/S10DC90活性稍弱於Ni/G10DC90,但其優異的抗積碳性質使得Ni/S10DC90適合在低H2O/CH4比值下進行甲烷蒸汽重組反應且具有良好的穩定性。
1.J. R. Rostrup-Nielsen, in: J. R. Anderson, M.Boudard,(Eds.),“Catalysis, Science and Technology”, vol. 5, Springer, New York p.3 (1984).
2.D. Wen-Sheng, R. Hyun-Seog,“Methaane Steam reforming over Ni/Ce-ZrO2 Catalysts:effect of nickel content”, Appl. Catal. A: Gen, 226, 63 (2002).
3. M. Mogensen, T. Lindegaard, and U. R. Hansen, “Physical Properties of Mixed Conductor Solid Oxide Fuel Cell Anodes of Doped CeO2”, J.Electrochem.Soc, 141, 2122 (1994).
4.A. E. Castro Luna, A. M Becerra, “Kinetics of Methane Steam Reforming on A Ni on Alumina-titania Catalyst”, Reaction Kinetics&Catalysis Letters, 61, 369 (1997).
5.V. A. Sobyanin, V. D. Belyaev, T. I. Politova, O. A. Marina, “Internal Steam Reforming of Methane over Ni-based Electrode in Solid Oxide Fuel Cells”, Appl. Catal. A: Gen, 133, 47 (1995).
6.P. Vernoux, M. Guillodo, J. Fouletier, A. Hammou, “Alternative Anode Material for Gradual Methane Reforming in Solid Oxide Fuel Cells”, Solid State Ionics, 135, 425 (2000).
7. E. G. M. Kuijpers, A. K. Breedijk, W. J. J. van der Wal, and J. W. Geus, “Chemisorption of Methane on Ni/SiO2 Catalysts and Reactivity of the Chemisorption Products Toward Hydrogen”, J. Catal, 81, 429 (1983).
8.T. P. Beebe, Jr., D. W. Goodman, B. D. Kay, and J. T. Yates, Jr., “Kinetics of the Activated Dissociative Adsorption of Methane on the Low Index Planes of Nickel Single-Crystal Surfaces”, J. Chem.Phys, 87, 2305 (1987).
9.Yasuyuki Matsumura, Toshie Nakamori, “Steam reforming of methane over nickel catalysts at low reaction temperature”, Appl. Catal. A: Gen. 258, 107 (2004).
10.S. J. Tauster, S. C. Fung, and R .L. Garten, “Strong Metal-Support Interactions. Group VIII Noble Metals Supported on TiO2”, J.Amer. Chem. Soc, 100, 170 (1978).
11.S. J. Tauster and S. C. Fung, “Strong Metal-Support Intractions: Occurrence among the Binary Oxides of Groups IIA-VB”, J. Catal, 55, 29 (1978).
12. R. Burch, and A. R. Flambard, “Strong Metal-Support Interactions in Nickel/Titania Catalysts:The Impportance of Interfacial Phenomena ”, J. Catal, 78, 389 (1982).
13.S. A Stevenson, J. A. Dumesic, R. T. K. Baker,and Ruckenstein, E., Eds., “Metal-support interactions in catalysis, sintering, and redispersion”, Van Nostrand-Reinhold, New York (1987).
14.G. L. Haller, and D. E. Resasco, Metal Support Interaction - Group-VIII Metals and Reducible Oxides, Advances in catalysis, 36, 173 (1989).
15. 林漢君,“以導氧離子材料擔載鎳觸媒行甲烷與二氧化碳重組反應之研究”,碩士論文,清華大學化工所,民國九十三年。
16. T. Shido et al. “Surface catalytic reactions assisted by gas phase molecules:activation of reaction intermediates”, Journal of Molecular Catalysis A: Chemical, 163, 67 (2000).