研究生: |
金安成 An-Cheng Chin |
---|---|
論文名稱: |
高熵合金薄膜應力及熱機械性質之量測 |
指導教授: |
周卓煇
Jwo-Huei Jou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2004 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 高熵 、薄膜 、應力 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討五至七元高熵合金薄膜,鍍覆在矽基材上之應力行為及熱機械性質,五元合金靶材成分為銅半鈷鎳鉻鋁 (Cu0.5CoNiCrAl)、六元高熵合金靶材成分為銅半鈷鎳鉻鋁鐵 (Cu0.5CoNiCrAlFe)及七元高熵合金靶材成分為銅半鈷鎳鉻鋁鐵鈦 (Cu0.5CoNiCrAlFeTi),此合金薄膜皆以直流濺鍍方式製備,所使用之應力量測設備為彎柄儀(Bending Beam Apparatus)。
應力量測結果顯示,高熵合金薄膜熱處理前之室溫殘留應力呈現張應力,隨合金成分元素的增加,室溫殘留應力些微下降,而熱處理後之室溫殘留應力也呈現張應力行為,且其值大於熱處理前之室溫殘留應力。所得熱機械性質(dσ/dT)隨薄膜厚度增加而有明顯減少的趨勢,惟在厚度由25 nm增加至40 nm時,其變化趨勢並不明確,根據文獻可得79,薄膜晶粒大小隨鍍膜厚度增加而成長,因此隨膜厚增加,熱機械性質明顯降低。而熱處理所造成室溫殘留應力之變化差距,也隨薄膜厚度增加而減少。
熱處理所造成室溫殘留應力之變化差距,隨合金成分的增加而逐漸減小,特別在成分由六元增加至七元時,其減小程度最為顯著。由於鈦元素的添加,其有較大的原子半徑及較強的鍵結能力,造成明顯的固溶強化效應及嚴重的晶格扭曲,使得原子在高溫下擴散不易,因此在熱處理過程中,薄膜微結構相當穩定。量測結果顯示,七元高熵合金薄膜熱處理前後之應力行為相當接近。
柒、參考文獻
1. 黃國雄, 碩士論文, 國立清華大學材料科學工程研究所, 1996.
2. 賴高廷, 碩士論文, 國立清華大學材料科學工程研究所, 1998.
3. 許雲翔, 碩士論文, 國立清華大學材料科學工程研究所, 2000.
4. 洪育德, 碩士論文, 國立清華大學材料科學工程研究所, 2001.
5. 童重縉, 碩士論文, 國立清華大學材料科學工程研究所, 2002.
6. J. Kramer, Z. phys., 37, 639, (1934).
7. J. Kramer, Annln Phys., 37, 19, (1934).
8. A. Bremer, D. E. Couch and E. K. Williams, J. Res. Natn. Bur. Stand., 44, 109, (1950).
9. P. Duwes, Trans. Am. Soc.Metals, 60, 607, (1967).
10. H. W. Kui, A. L. Greer and D. Turnbull, Applied Physics Letters, 45, 6, 615-616, (1984).
11. A. Inoue, K. Kita, T. Masumoto and K. Ohtera, Japanese Journal of Applied Physics Part 2-Letters, 27, 10, 1796-1799, (1998).
12. A. Inoue, K. Kita, T. Masumoto and T. Zhang, Materials Transaction, JIM, 30, 9, 722-725, (1989).
13. A. Inoue-A, T. Zhang and T. Masumoto, Materials Transactions, JIM, 31, 3, 177-183, (1999).
14. A. Inoue and T. Masumoto, U.S. Patent No.5032196, Japanese Patent 07-122120.
15. A. Peker and W. L. Johnson, Applied Physics Letters, 63, 17, 2342-2344, (1993).
16. A. Inoue, T. Zhang, K. Ohba and T. Shibata, Materials Transactions, JIM, 36, 7, 876-878, (1995).
17. A. Inoue and J. S. Gook, Materials Transactions, JIM, 36, 10, 1282-1285, (1995).
18. A. Inoue, N. Nishiyama and T. Matsuda, Materials Transactions, JIM, 37, 2, 181-184, (1996).
19. Y. He, T. D. Shen, and R. B. Schwarz, Metallurgical and Materials Transactions A-Physics Metallurgy and Materials Science, 29, 7, 1795-1804, (1998).
20. T. Zhang and A. Inoue, Materials Transactions, JIM, 39, 10, 1001-1006, (1998).
21. A. Inoue and T. Zhang, Materials Transactions, JIM, 40, 301, (1999).
22. A. Inoue, T. Zhang and A. Takeuchi, Applied Physics Letters, 71, 4, 464-466, (1997).
23. A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Materials Transactions, JIM, 33, 10, 937-945, (2002).
24. A. Inoue, T. Nakamura, T. Sugita, T. Zhang and T. Masumoto, Materials Transactions, JIM, 34, 4, 351-358, (1993).
25. A. Inoue and T. Zhang, Materials Transactions, JIM, 37, 2, 185-187, (1996)
26. A. Inoue, N. Nishitama and H. Kimura, Materials Transactions, JIM, 38, 2, 179-183, (1997).
27. A. Inoue, Bulk Amorphous Alloys, 2, Trans. Tech. Publications, Zurich, 28, (1999).
28. A. Inoue and N. Nishiyama, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 226, JUN, 401-405, (1997).
29. H. S. Chen, H. J. Leamy and C. E. Miller, Annual Review of Materials Science, 10, 363-391, (1980).
30. B. B. Prasad, T. R. Anantharaman, A. K. Bhatnagar, D. Ganesan and R. Jagannathan, journal of Non-crystalline Solids, 61-2, Jan, 391-395, (1984).
31. Carlisle and H. Ben, Machine Design, 58, 1, 24-30, (1986).
32. H. Jones, Rapid Solidification of Metals and Alloys, Inst. of Metallurgists, London, 1982.
33. F. G. Yost , Journal of Materials Science, 16, 11, 3039-3044, (1981).
34. P. Haasen, “Metallic Glasses”, Journal of Non-Crystalline Solids, 56, 1-3, 191-199, (1983).
35. G. G. Stoney, Proc. Roy. Soc. (London), A82, 172, 1909.
36. F. K. Reinhart and R. A. Logan, J. Appl. Phys., 44, 3171, 1973.
37. Z. C. Feng and H. D. Liu, J. Appl. Phys., 54, 83, 1983.
38. J. H. Jou, IBM-RJ (Physics) 6058, 1988.
39. J. H. Jou, L. Hsu and L. S. Chang, Thin Solid Films, 201, 253, 1991.
40. J. H. Jou and L. Hsu, J. Appl. Phys., 69(3), 1384, 1991.
41. J. H. Jou, J. Hwang and D. C. Hofer, IBM-RJ (Physics) 5984, 1987.
42. E. C. Crittender, Jr., and R. W. Hoffman, Phys. Rev., 78, 349, 1951.
43. D. O. Smith, M. S. Cohen and G. P. Wiess, J. Appl. Phys., 31, 1775, 1960.
44. D. O. Smith, J. Appl. Phys., 32, 70s, 1960.
45. J. S. Vermask, C. W. Mays and D. Kuhlman-Wilsdorf, Surface Science, 12, 128, 1968.
46. R. Abermann, R. Kramer and J. Maser, Thin Solid Films, 52, 215, 1978.
47. W. Andra and H. Danan, Phys. Stat. Sol., A70, K145, 1982.
48. F. C. Frank and J. H. van der Merwe, Proc. Roy. Soc.(London)., A189, 205, 1949.
49. J. H. van der Merwe, J. Appl. Phys., 34, 123, 1963.
50. J. W. Matthews, J. Vac. Sci. Technol., 12, 126, 1975.
51. R. People and J. C. Bean, Appl. Phys. Lett., 47, 322, 1985.
52. J. A. Thornton, J. Taback and D. W. Hoffman, Thin Solid Films, 64, 111, 1979.
53. Bensaoula, J. C. Wolef, A. Ignatiev, F. O. Fong and T. S. Leung, J. Vac. Sci. Technol., A2, 389, 1984.
54. P. Chaudhari, J. Vac. Sci. Technol., 9, 520, 1972.
55. E. C. Crittender, Jr. and R. W. Hoffman, Revs. Modern Phys., 25, 310, 1953.
56. A. Segmuller, J. Appl. Phys. Suppl., 32, 89s, 1961.
57. R. Raj and M. F. Ashby, Acta Metall., 23, 653, 1975.
58. J. D. Finegan and R. W. Hoffman, J. Appl. Phys., 30, 597, 1959.
59. F. A. Doljck and R. W. Hoffman, Thin Solid Films, 12, 71, 1972.
60. F. M. D’Heurle, Metall. Trans., 1, 725, 1970.
61. D. W. Hoffman and J. A. Thornton, Thin Solid Films, 17, 5, 1989.
62. H. Windischmann, J. Appl. Phys., 62, 1800, 1987.
63. R. A. Holmwood and R. Glang, J. Electrochem. Soc., 112, 827, 1965.
64. E. Klokholm, J. Vac. Sci. Technol., 6, 138, 1969.
65. P. A. Flinn, D. S. Gardner and W. D. Nix, IEEE Trans., ED-34, 689, 1987.
66. M. Langier, Thin Solid Films, 75, 17, 1981.
67. T. F. Retajczyk, Jr. and A. K. Sinha, Appl. Phys. Lett., 36, 1962, 1980.
68. T. F. Retajczyk, Jr. and A. K. Sinha, Thin Solid Films, 70, 241, 1980.
69. J. T. Pan and I. T. Blech, J. Appl. Phys., 55, 2874, 1984.
70. A. Lahav, K. A. Grim and I. A. Blech, J. Appl. Phys., 67, 734, 1990.
71. J. H. Jou and L. J. Chen, Appl. Phys. Lett., 59, 46, 1991.
72. J. H. Jou and L. J. Chen, Macromolecules, 25, 179, 1992.
73. M. Janda, Thin Solid Films, 112, 219, 1984.
74. J. A. Thornton and J. L. Lamb, Thin Solid Films, 119, 87, 1984.
75. 黃瑞蓮, 碩士論文, 國立清華大學材料所, 8, 1990.
76. 韓名揚, 博士論文, 國立清華大學材料所, 5, 1994.
77. 鄭富文, 碩士論文, 國立清華大學材料所, 8, 1996.
78. S. Craig and G. L. Harding, J. Vac. Sci. Technol., 19, 205, 1987.
79. 蔡銘洪, 碩士論文, 國立清華大學材料所, 6, 2003.