研究生: |
林耿暐 Lin, Geng-Wei |
---|---|
論文名稱: |
甲醇蒸氣重組器之效能分析與優化研究 Analyzing and Enhancing Performance of Methanol Steam Reformer |
指導教授: |
曾繁根
Tseng, Fan-Gang 楊重熙 Yang, Chung-Shi |
口試委員: |
林洸銓
Lin, Kuang-Chuan 薛康琳 Hsueh, Kan-Lin |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 計算流體力學 、甲醇蒸氣重組 、重組器 、產氫 |
外文關鍵詞: | CFD, methanol steam reforming, reformer, hydrogen production |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
甲醇重組產氫反應器可在燃料電池系統將液態甲醇燃料轉換成富有氫氣的氣體,解決氫氣儲存和運輸的困難,極具發展潛力。其中甲醇蒸氣重組反應(SRM)比起甲醇部分氧化反應(POM)有著較高的單位甲醇產氫量以及較低的一氧化碳濃度,然而其缺點是較高的工作溫度以及SRM反應為吸熱反應,因此需要額外的加熱裝置。
本研究的反應器以瑞士捲流道設計,利用計算流體力學(CFD)來模擬三維的甲醇蒸氣重組反應器,使用的觸媒為Cu/ZnO/Al2O3。利用Amphlett et al.[1]所推導出的甲醇蒸氣重組的反應動力學模型為基礎進行模擬計算,模擬在不同入口的水醇比、牆壁溫度對甲醇轉換率、氫氣選擇率以及一氧化碳選擇率造成的影響,並設計出能用於100W磷酸燃料電池的重組器。在結果中顯示,重組器在270OC時,有著約85%的轉換率,且產氫量有1700sccm,CO濃度為1.3%。
Steam Reforming of methanol(SRM) reaction,which composes Oxidative Steam Reforming of Methanol (OSRM) reaction, has higher hydrogen produciotn per methanol molecular, and lower carbon monoxide concentration.Because SRM reaction is endothermic reaction,it needs extra heat source to maintain work temperature.
A Swiss-Roll channel was designed for the reactor used in this study. Modeling and CFD simulation three-dimentional microreactor to study hydrogen production via steam reforming of methanol reaction over a Cu/ZnO/Al2O3 catalysts.The reaction kinetic rate expression reported by the Amphlett et al.[1]are considered to model the steam reforming of methanol reaction and design a reformer for a 100W phosphoric acid fuel cell. The result show that The reformer has a conversion rate of about 85% , and its hydrogen production and CO concentration are 1700sccm and 1.3% respectively.
[1] J.S. Suh, M.T. Lee, R. Greif, C.P. Grigoropoulos, A study of steam methanol reforming in a microreactor Journal of Power Sources ,2007;173:458–466
[2] J.C. Amphlett, K.A.M. Creber, J.M. Davis, R.F. Mann, B.A. Peppley, D.M. Stokes, Hydrogen production by steam reforming of methanol for polymer electrolyte fuel cells Int. J. Hydrogen Energy 19 (1994) 131–137.
[3] J.S.Suh, M.T.Lee , R. Greif, P.Costas, Grigoropoulos CP. Transport phenomena in a steam–methanol reforming micro-reactor with internal heating. Int J Hydrogen Energy 2009;34:314–22.
[4] H. Purnama, T. Ressler , R.E. Jentoft, H. Soerijanto, R.Schlogl, R.Schomacker. CO formation/selectivity for steam reforming of methanol with a commercial CuO/ZnO/Al2O3 catalyst. Appl Catal A 2004;259:83–94
[5] W.H. Chen, M.R.Lin , T.L.Jiang , M.H. Chen . Modeling and simulation of hydrogen generation from high temperature and low-temperature water gas shift reactions. Int J Hydrogen Energy 2008;33:6644–56.
[6] M.S. Herdem, M. Mundhwa, S. Farhad, and F. Hamdullahpur, Multiphysics Modeling and Heat Distribution Study in a Catalytic Microchannel Methanol Steam Reformer, Energy Fuels 2018, 32, 7220−7234
[7] A. Karim, J. Bravo, A. Datye, Nonisothermality in packed bed reactors for steam reforming of methanol, Applied Catalysis A: General 282 (2005) 101–109
[8] S.W. Perng, R.F. Horng, H.W. Wu, Effect of a diffuser on performance enhancement of a cylindrical methanol steam reformer by computational fluid dynamic analysis, Applied Energy 206 (2017) 312–328
[9] A. Sari, J. Sabziani, Modeling and 3D-simulation of hydrogen production via methanol steam reforming in copper-coated channels of a mini reformer, Journal of Power Sources 352 (2017) 64-76
[10] I. Graf et al.Chemical Engineering Journal, 2014, 244, 234-242
[11] W. Zhou, Q.h. Wang, J.r. Li, Y. Tang, Z.M. Hung, J.P. Zhang, Q. Lu, Hydrogen production from methanol steam reforming using porous copper fiber sintered felt with gradient porosity Hydrogen Energy, 2015, 40, 244-255
[12] Y. Choi, H.G. Stenger, Water gas shift reaction kinetics and reactor modeling for fuel cell grade hydrogen, Journal of Power Sources 2003,124, 432–439
[13] R. Chein , Y.C. Chen , J.N. Chung , Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production, Applied Energy 2013,102,1022–1034
[14] H. An, A. Li, A. P. Sasmito , J.C.Kurnia, S.V.Jangam , A.S.Mujumdar, Computational fluid dynamics (CFD) analysis of micro-reactor performance: Effect of various configurations, Chemical Engineering Science 75 (2012) 85–95.
[15] G. Wang et al. Energy, 2013, 51, 267-272
[16] L. E. Briand et al. Catalysis Today, 2000, 62, 219-229
[17] M. Badlani et al. Catalsis Letters, 2001, 75, 3-4
[18] J. Yu et al. Microporous and Mesoporous Materials, 2016, 225, 472-481
[19] A. Montebelli et al. Applied Catalysis A : General, 2014, 481, 96-103
[20] W. Zhou, W. Yu, Y. Ke, Y. Liu, S. Wan, J. Lin, Size effect and series-parallel integration design of laminated methanol steam reforming microreactor for hydrogen production, international journal of hydrogen energy 43 (2018) 19396-19404.
[21] J. M. Sohn,Y. C. Byun, J.Y. Cho, J. Choe, K. H. Song, “Development of the integrated methanol fuel processor using micro-channel patterned devices and its performance for steam reforming of methanol” International Journal of Hydrogen Energy 32 (2007) 5103 – 5108.
[22] G. Kolb, S. Keller, D. Tiemann, K. Schelhaas, J. Schurer, O. Wiborg, Design and operation of a compact microchannel 5 kWel,net methanol steam reformer with novel Pt/In2O3 catalyst for fuel cell applications, Chemical Engineering Journal 207–208 (2012) 388–402.