研究生: |
楊子竑 Yang, Tzu-Hung |
---|---|
論文名稱: |
鹼性雙氧水處理之二氧化鈦摻雜聚苯並咪唑薄膜應用於磷酸燃料電池 Phosphoric Acid Fuel Cell via Improved Proton Exchange Membrane Composited by Alkaline Hydrogen Peroxide Modified TiO2 Nanoparticle/Polybenzimidazole |
指導教授: |
曾繁根
Tseng, Fan-Gang 王本誠 Wang, Pen-Cheng |
口試委員: |
蘇育全
Su, Yu-Chuan 薛康琳 Hsueh, Kan-Lin |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 56 |
中文關鍵詞: | 磷酸燃料電池 、二氧化鈦摻雜聚苯並咪唑薄膜 、鹼性雙氧水改質 |
外文關鍵詞: | Polybenzimidazole (PBI) based composite membrane, TiO2 nanoparticle filler, alkaline hydrogen peroxide treatment |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磷酸燃料電池 (Phosphoric acid fuel cell, PAFC) 為高溫型之燃料電池,其操作溫度為100-250oC,和質子交換膜燃料電池(Proton exchange membrane fuel cell, PEMFC) 比起來具備較高的一氧化碳毒化 (CO poisoning) 容忍度、可簡化水熱管理等好處。然而磷酸燃料電池卻有電解質隨著時間而洩漏的問題,影響到電池之長效穩定性,使其發展受到限制。
本研究以鹼性雙氧水改質之二氧化鈦 (Alkaline hydrogen peroxide modified TiO2, AHP-TiO2) 顆粒改質聚苯並咪唑薄膜 (Polybenzimidazole, PBI),旨在提高薄膜留存水及磷酸之能力,以維持電池之長效穩定性。
為了觀察二氧化鈦改質前後的變化,本研究以FTIR確認鹼性雙氧水是否能提高二氧化鈦表面的OH官能基;由BET分析二氧化鈦之比表面積及孔徑分布,並搭配TGA之數據精確計算出表面氫氧官能基的密度。於PBI膜材方面,藉由SEM觀察膜材之表面形貌與厚度,並且以拉伸機測試其機械強度變化。
在電性表現方面,本實驗以交流阻抗法 (AC impedance analysis) 得知PBI膜之質子傳導度 (Proton conductivity);並以燃料電池測試機台 (Mini 150) 測試本研究製備的質子交換膜應用於磷酸燃料電池之效能。經過眾多分析及測試後發現,添加2% AHP-TiO2的PBI膜可以提高約2倍的質子傳導度;電池測試方面,其最大功率密度在170oC時可達961mW/cm2;在長效測試方面,經過92 h的長效測試 (0.2A/cm2, 170oC) 後電池電壓僅下降3%。
Recently, high temperature fuel cells, such as phosphoric acid fuel (PAFC), have been studied. It has been previously reported that increasing the operation temperature of fuel cells can be advantageous to not only increase its electrocatalytic activities and tolerance to impurities (such as carbon monoxide), but also simplify the hydrothermal management system and increase overall energy conversion efficiency. However, the electrolyte in the membrane will leach out during operation, and this problem limits the development of phosphoric acid fuel cell.
In this thesis, in order to overcome the electrolyte leaching issue, we used polybenzimidazole (PBI) membrane as the substrate and developed the composite proton exchange membrane which was composed of the filler “titanium dioxide (TiO2)”. And then, we used alkaline hydrogen peroxide (AHP) to increase the hydroxyl group on the TiO2 surface to further enhance the durability of fuel cell.
About the characterization analysis, we used Fourier transform infrared spectroscopy (FTIR), BET and thermogravimetric analysis (TGA) to determine the enhancement of hydroxyl group on the TiO2 surface after AHP modification. Then we used scanning electron microscope (SEM) to observe the surface morphology and thickness of the PBI membrane. Tensile test was used to understand the effect of the addition of TiO2 on mechanical properties. Finally, we conducted AC impedance analysis to measure the proton conductivity and single cell test/life time test to know the performance of fuel cell.
The results show that the proton conductivity of 2% AHP-TiO2/RPBI was twice pristine PBI. In single cell test, the best performance of 2% AHP-TiO2/RPBI can reach 961 mW/cm2. In life time test, 2% AHP-TiO2/RPBI just decayed 3% of its voltage after 92 h of operation under 170oC and 0.2 A/cm2.
[1] A. Kirubakaran, S. Jain, and R. Nema, "A review on fuel cell technologies and power electronic interface," Renewable and Sustainable Energy Reviews, vol. 13, pp. 2430-2440, 2009.
[2] R. Lan, X. Xu, S. Tao, and J. T. Irvine, "A fuel cell operating between room temperature and 250 C based on a new phosphoric acid based composite electrolyte," Journal of Power Sources, vol. 195, pp. 6983-6987, 2010.
[3] A. B. Stambouli and E. Traversa, "Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy," Renewable and sustainable energy reviews, vol. 6, pp. 433-455, 2002.
[4] 本間琢也 and 上松宏吉, 燃料電池. 台灣: 瑞昇文化, 2011.
[5] 邱裕婷, "氧化石墨烯修飾之多孔玻璃纖維應用於 燃料電池之酸/鹼複合式質子交換膜," 碩士, 工程與系統科學系, 國立清華大學, 台灣, 2016.
[6] J. Larminie, A. Dicks, and M. S. McDonald, Fuel cell systems explained vol. 2: J. Wiley Chichester, UK, 2003.
[7] N. Sammes, R. Bove, and K. Stahl, "Phosphoric acid fuel cells: Fundamentals and applications," Current opinion in solid state and materials science, vol. 8, pp. 372-378, 2004.
[8] J. Liao, Q. Li, H. Rudbeck, J. O. Jensen, A. Chromik, N. Bjerrum, et al., "Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells," Fuel Cells, vol. 11, pp. 745-755, 2011.
[9] S. Subianto, "Recent advances in polybenzimidazole/phosphoric acid membranes for high‐temperature fuel cells," Polymer International, vol. 63, pp. 1134-1144, 2014.
[10] H. Pu, L. Liu, Z. Chang, and J. Yuan, "Organic/inorganic composite membranes based on polybenzimidazole and nano-SiO 2," Electrochimica acta, vol. 54, pp. 7536-7541, 2009.
[11] J. Lobato, P. Cañizares, M. A. Rodrigo, D. Úbeda, and F. J. Pinar, "Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes," Journal of Power Sources, vol. 196, pp. 8265-8271, 2011.
[12] R. He, Q. Li, G. Xiao, and N. J. Bjerrum, "Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors," Journal of Membrane Science, vol. 226, pp. 169-184, 2003.
[13] E. Bakangura, L. Wu, L. Ge, Z. Yang, and T. Xu, "Mixed matrix proton exchange membranes for fuel cells: state of the art and perspectives," Progress in Polymer Science, vol. 57, pp. 103-152, 2016.
[14] F. J. Pinar, P. Cañizares, M. A. Rodrigo, D. Ubeda, and J. Lobato, "Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount," RSC Advances, vol. 2, pp. 1547-1556, 2012.
[15] F. J. Pinar, P. Cañizares, M. A. Rodrigo, D. Úbeda, and J. Lobato, "Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes," Journal of Power Sources, vol. 274, pp. 177-185, 2015.
[16] X. Huang, F. Liu, P. Jiang, and T. Tanaka, "Is graphene oxide an insulating material?," in Solid Dielectrics (ICSD), 2013 IEEE International Conference on, 2013, pp. 904-907.
[17] K. Hinokuma and M. Ata, "Fullerene proton conductors," Chemical physics letters, vol. 341, pp. 442-446, 2001.
[18] C. Xu, Y. Cao, R. Kumar, X. Wu, X. Wang, and K. Scott, "A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells," Journal of Materials Chemistry, vol. 21, pp. 11359-11364, 2011.
[19] C.-Y. Wu, K.-J. Tu, J.-P. Deng, Y.-S. Lo, and C.-H. Wu, "Markedly Enhanced Surface Hydroxyl Groups of TiO2 Nanoparticles with Superior Water-Dispersibility for Photocatalysis," Materials, vol. 10, p. 566, 2017.
[20] 施正雄, 儀器分析原理與應用. 台灣: 五南圖書, 2012.
[21] N. Üregen, K. Pehlivanoğlu, Y. Özdemir, and Y. Devrim, "Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells," international journal of hydrogen energy, vol. 42, pp. 2636-2647, 2017.
[22] M. Litt, R. Ameri, Y. Wang, R. Savinell, and J. Wainwright, "Polybenzimidazoles/phosphoric acid solid polymer electrolytes: mechanical and electrical properties," MRS Online Proceedings Library Archive, vol. 548, 1998.
[23] Y.-L. Ma, J. Wainright, M. Litt, and R. Savinell, "Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells," Journal of The Electrochemical Society, vol. 151, pp. A8-A16, 2004.
[24] Y. H. Jeong, K. Oh, S. Ahn, N. Y. Kim, A. Byeon, H.-Y. Park, et al., "Investigation of electrolyte leaching in the performance degradation of phosphoric acid-doped polybenzimidazole membrane-based high temperature fuel cells," Journal of Power Sources, vol. 363, pp. 365-374, 2017.
[25] T. Søndergaard, L. N. Cleemann, H. Becker, T. Steenberg, H. A. Hjuler, L. Seerup, et al., "Long-Term Durability of PBI-Based HT-PEM Fuel Cells: Effect of Operating Parameters," Journal of The Electrochemical Society, vol. 165, pp. F3053-F3062, 2018.