簡易檢索 / 詳目顯示

研究生: 魏欣俞
Wei, Sin Yu
論文名稱: 強化記憶體診斷的快速錯誤樣型抽取器
A Fast Sweep-Line-Based Failure Pattern Extractor for Memory Diagnosis
指導教授: 吳誠文
Wu, Cheng Wen
口試委員: 李昆忠
黃俊郎
洪浩喬
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 53
中文關鍵詞: 錯誤分析錯誤樣型識別記憶體診斷記憶體測試良率提升
外文關鍵詞: failure analysis, failure pattern identification, memory diagnosis, memory testing, yield improvement
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 記憶體一直以來被認為是CMOS技術的主要驅動力之一,由於其高密度、大容量、關鍵時序及靈敏度等特性,因此記憶體診斷對技術和產品的開發是很重要。傳統上,記憶體錯誤樣型定義對記憶體診斷來說是一個很重要的任務,隨著記憶體的密度及容量不斷地成長,測試資料的數量也持續地增加,因此需要一個更有效率的錯誤樣型抽取方法。在本文中,我們提出了一個掃描線為基礎的記憶體錯誤樣型抽取器來加快抽取的過程。我們所提出的工具可以在大約35分鐘的時間,從20片業界上最先進的晶圓中抽取出記憶體錯誤樣型,跟目前最好的方法─以稀疏矩陣為基礎的方法來做比較,減少了15%的抽取時間。在我們的實驗中,我們也能從業界的產品裡發現一個以前沒有定義過的關鍵錯誤樣型,顯示了抽取器更健全地定義錯誤樣型的能力。


    Memories have been considered as one of the major drivers of CMOS technology, due to their high density, high capacity, critical timing, sensitivity, etc. Memory diagnosis is therefore important for technology and product development. Memory failure pattern identification is traditionally an essential task for diagnosis. As memory density and capacity continue to grow, the amount of test data also keeps increasing, thus a more efficient failure pattern extraction method is required. In this thesis, we propose a sweep-line-based memory failure pattern extractor to speed up the extraction process. The proposed tool can extract memory failure patterns from an industrial case of 20 state-of-the-art wafers in about 35 minutes, reducing 15% analysis time as compared with the sparse-matrix-based method that is the best so far. In our experiments of the industrial case, we are also able to identify a critical failure pattern that was not defined before, showing its more robust pattern identification capability.

    Abstract i Contents ii List of Figures iv List of Tables vi Chapter 1 Introduction 1 1.1 Memory Testing and Diagnosis 1 1.2 Objective 5 1.3 Organization 6 Chapter 2 Pattern Based Failure Analysis 7 2.1 Memory Failure Bitmap Analysis 7 2.2 Memory Failure Pattern Analysis 9 2.3 Previous Approach 9 Chapter 3 Memory Failure Pattern Extractor 12 3.1 Memory Failure Bitmap Composition 12 3.2 Failure Pattern Definition 13 3.3 Failure Pattern Extraction Method 16 Chapter 4 Experimental Results 21 4.1 Failure Pattern Analysis at Die Level 22 4.2 Failure Pattern Analysis at Wafer Level 26 4.3 An Industrial Case 29 4.4 High-Volume Failure Pattern Analysis 30 4.5 Special Failure Pattern 48 Chapter 5 Conclusions and Future Work 50 5.1 Conclusions 50 5.2 Future Work 50 Bibliography 52

    [1] C. A. Mack, “Fifty Years of Moore’s Law,” IEEE Trans. Semiconductor Manufacturing, vol. 24, no. 2, pp. 202–207, May. 2011.
    [2] WiKi., Semiconductor device fabrication [Online]. Available https://en.wikipedia.org/wiki/Semiconductor_device_fabrication
    [3] D. Abercrombie, P. Elakkumanan, and L. Liebmann. Restrictive Design Rules and Their Impact on 22 nm Design and Physical Verification [Online]. Available http://www.eda.org/edps/edp09/ApprovedPapers/10_1330_EDPS09_RDR_22nm_IBM_MG_FINAL.pdf
    [4] J. Buurma and PT Patel. Open Access Offers Joint Solutions Faster [Online]. Available https://www.si2.org/events_dir/2006/9oac/aprio.pdf
    [5] Y. Zorian, “Embedded Infrastructure IP for SOC Yield Improvement”, in Proc. IEEE/ACM Design Automation Conf. (DAC), pp. 709–712, June 2002.
    [6] Semiconductor Industry Associational, “International Technology Roadmap for Semiconductors (ITRS), 2000”, Dec. 2000.
    [7] L.-T. Wang, C.-W. Wu, and X. Wen, Design for Testability: VLSI Test Principles and Architectures. San Francisco, CA: Elsevier (Morgan Kaufmann), 2006.
    [8] Z. Song, “SRAM Failure Analysis Evolution Driven by Technology Scaling,” in Proc. IEEE Int. Symp. Phys. and Failure Analysis of Int. Circu., pp. 223–230, Jun. –Jul. 2014.
    [9] J. Vollrath, U. Lederer, and T. Hladschik, “Compressed Bit Fail Maps for Memory Fail Pattern Classification,” in Proc. IEEE Euro. Test Workshop (ETW), pp. 125–130, May 2000.
    [10] B.-Y. Lin, M. Lee, and C.-W. Wu, “A Memory Failure Pattern Analyzer for Memory Diagnosis and Repair,” in Proc. IEEE VLSI Test Symp. (VTS), pp. 234–239, Apr. 2012.
    [11] J. Li, Y. Huang, W.-T. Cheng, C. Schuermyer, D. Xiang, E. Faehn, and R. Farrugia, “A Hybrid Flow for Memory Failure Bitmap Classification,” in Proc. IEEE Asian Test Symp. (ATS), pp. 314–319, Nov. 2012.
    [12] J. T. Chen, J. Khare, K. Walker, S. Shaikh, J. Rajski, and W. Maly, “Test Response Compression and Bitmap Encoding for Embedded Memories in Manufacturing Process Monitoring” in Proc. Int. Test Conf. (ITC), pp. 258–267, Oct.–Nov. 2001.
    [13] M. A. Merino, S. Cruceta, A. Garcia, and M. Recio, “SmartBitTM: Bitmap to Defect Correlation Software for Yield Improvement,” in Proc. IEEE/SEMI Adv. Sem. Man. Conf. and Workshop, pp. 194–198, Sept. 2000.
    [14] J. Segal, A. Jee, D. Lepejian, and B. Chu, “Using Electrical Bitmap Results from Embedded Memory to Enhance Yield,” IEEE Des. & Test Comput., vol. 15, no. 3, pp. 28–39, May 2001.
    [15] B.-Y. Lin, C.-W. Wu, M. Lee, H.-C. Lin, C.-N. Peng, and M.-J. Wang. “A Local Parallel Search Approach for Memory Failure Pattern Identification.” IEEE Trans. Comput., no. 99, pp. 1–1, 2015
    [16] J. Segal, A. Jee, D. Lepejian, and B. Chu, “Using Electrical Bitmap Results from Embedded Memory to Enhance Yield”, IEEE Design & Test of Computers, vol. 15, no. 3, pp. 28–39, May 2001.
    [17] Y. E. Hong, L. S. Leong,W. Y. Choong, L. C. Hou, and M. Adnan, “An overview of advanced failure analysis techniques for Pentium and Pentium Pro microprocessors”, Intel Technology Journal, no. 2, 1998.
    [18] B. B. Sindahl, “Interactive Graphical Analysis of Bit-Fail Map Data Using Interactive Pattern Recognition,” in Proc. Int. Test Conf. (ITC), pp. 687–695, 1987.
    [19] P. Mazumder and J. K. Patel, “Parallel Testing for Pattern-Sensitive Faults in Semiconductor Random-Access Memories,” IEEE Trans. Comput., vol. 38, no. 3, pp. 394–407, Mar. 1989.
    [20] T. Viacroze and M. Lequeux, “Analysis of Failures on Memories Using Expert System Techniques,” in Proc. Int. Test Conf. (ITC), pp. 823–932, Sept. 1990.
    [21] R. S. Collica, J. P. Card, and W. Martin, “SRAM Bitmap Shape Recognition and Sorting Using Neural Networks,” IEEE Trans. Sem. Man., vol. 8, no. 3, pp. 326–332, Aug. 1995.
    [22] K.-L. Cheng, C.-W. Wang, J.-N. Lee, Y.-F. Chou, C.-T. Huang, and C.-W. Wu, “FAME: A Fault-Pattern Based Memory Failure Analysis Framework,” in Proc. IEEE/ACM Int. Conf. on Comp.-Aided Des. (ICCAD), pp. 595–598, Nov. 2003.
    [23] R.-F. Huang, J.-F. Li, J.-C. Yeh, and C.-W. Wu, “Raisin: Redundancy Analysis Algorithm Simulation,” IEEE Design Test Comput., vol. 24, no4, pp. 386–389 Jul.–Aug. 2007.
    [24] C.-W. Wang, K.-L. Cheng, J.-N. Lee, Y.-F. Chou, C.-T. Huang, C.-W. Wu, F. Huang, and H.-T. Yang, “Fault Pattern Oriented Defect Diagnosis for Memories,” in Proc. Int. Test Conf. (ITC), pp. 29–38, Sept. 2003.
    [25] W.-H. Wang and C.-W. Wu, “Statistical Analysis for Failure-Pattern Based Memory Failure Diagnostics,” Master Thesis, Dept. Electrical Engineering, National Tsing Hua University, 2007.
    [26] Y.-L. Hsieh, G.-H. Tzeng, T.-R. Lin, G.T.-R., and H.-C. Yu, “Wafer Sort Bitmap Data Analysis Using the PCA-Based Approach for Yield Analysis and Optimization,” IEEE Trans. Sem. Man., vol.23, no.4, pp.493–502, Nov. 2010.
    [27] J. Yin, J. Yu, S. Xie, D. Sun, Y.-E. Ling, Z. Song, C.-E. Schiller, G. Teverskoy, and M.-J. Villalobos, “Case Studies of Fault Isolation for the Global Failing Patterns on SRAM Bitmap caused by the Defects in Peripheral Logic Regions,” in Proc. Adv. Sem. Man. Con. (ASMC), pp.226–230, May. 2013.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE