研究生: |
江吉軒 Chiang, Chi-Hsuan |
---|---|
論文名稱: |
微型渦輪發電機應用於冷熱電聯產系統之配置設計與性能分析 Configuration Design and Performance analysis of MicroTurbine for a Combined Cooling Heating and Power System (CCHP) |
指導教授: |
蔣小偉
Chiang, Hsiao-Wei |
口試委員: |
黃智永
郭啟榮 蔣小偉 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 123 |
中文關鍵詞: | 冷熱電聯產系統 、三生系統 、微型渦輪發電系統 、吸收式冷凍系統 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在再生能源議題聲浪不減的時代,能源供應方式的移轉並非一蹴
可幾,存在於再生能源設備與傳統石化能源設備間的節能設備扮演關鍵性之重要角色。本研究冷熱電聯產系統即為此類設備之典型代表。
本研究採用JetCat公司SPT5微型渦輪引擎進行發電配置與廢熱
利用設計,該發電系統經一改良動作,透過實驗量測與系統參數見立,發現其發電效率可達10.65%。然而渦輪發電系統具有近1000K之高溫廢熱能量,因此,本研究藉由程式設計一吸收式冷凍系統進行其廢熱致冷作用,分析吸收式冷凍系統各項參數影響,並調配適用於SPT5微型渦輪發電系統之冷凍系統規格,探討其發電能量、致冷能量與加熱能量多寡,並著重於總體效率提升程度,完成一套結合微型渦輪發電系統與吸收式冷凍空調之冷熱電聯產分析研究系統。最後,再評估此研究之冷熱電聯產系統應用於多種環境之可能性。
由研究歸納得知,引入廢熱利用概念可提升微型渦輪發電系統總
體效率約4倍,其全負載致冷能力可達56.23 kW,配合其發電量14.4 kW,可供應一小型社區於尖峰時段所需之能量;亦分析出其多種使用環境之建議能量分配。以上資料可提供後者於冷、熱、電共生系統研究方向及市場效益評估方式之參考依據。
To pursue renewable energy, it is hard to find new energy sources in our daily life. It should be easier to find alternative ways to improve our current energy technology to increase efficiency and reduce waste. Therefore, Combine Cooling Heating and Power Systems (CCHP) are one way to do this for us. .
In this study, we used a microturbine SPT5 model made by JETCAT as the main power source for our CCHP system. The microturbine has attained a thermal to electric efficiency 10.65% with about 1000K exhaust gas temperature. An Absorption Refrigeration System (ARS) was designed to create the cooling capacity by using the waste heat. Then we analyze the Coefficient of Performance (COP) and temperatures in the ARS system. By estimating how much cooling and heating load are needed from CCHP, we can perform a study of the configuration design and performance analysis for CCHP. Finally, the feasibility of CCHP systems for different scenarios would be analyzed. .
In conclusion, by using the concept of waste heat recovery, the overall efficiency of the original system can be greatly improved.
The cooling load of 56.23 kW and electricity load of 14.4 kW in our CCHP can support a small community. The methods and databases in this study can provide guidance to help future CCHP system designs.
[01]. 經濟部能源局 http://www.moeaboe.gov.tw/
[02]. 江宜哲,“生質柴油微型渦輪機發電系統性能測試”,國立清華大學動力機械工程學系碩士論文,2006年7月。
[03]. ASHRAE Handbook of Fundamentals, pp.12, 2004.
[04]. 莊秉勳,“微型渦輪發電系統之開發”,國立清華大學動力機械工程學系碩士論文,2012年7月。
[05]. McDonald, C. F. and Wilson, D. G., “The Utilization of Recuperated and Regenerated Engine Cycles for High-Efficiency Gas Turbines in the 21st Century,” Applied Thermal Engineering Vol. 16, Nos 8/9, pp. 635-653, 1996.
[06]. Bathie, W. W., “Fundamentals of Gas Turbines─2nd ed.,” John Wiley & Sons, Inc., New York, 1996.
[07]. Rodger, C.J., 2000, “25-5 Kwe Microturbine Design Aspects,” ASME Paper 2000-GT-0626, ASME Turbo Expo, Munich, Germany.
[08]. Capstone Turbine Corporation:http://www.capstoneturbine.com
[09]. 徐士傑,“微型渦輪發電系統配套設計與性能測試”,2008年。
[10]. Farber E. A., F. M. F. Flanigan, L. Lopez and R. W. polifka, “Operation and Performance of the University of Florida Solar Air-conditioning System”, Solar Energy, Vol. 10, No. 2, pp. 91-95, 1996.
[11]. P. J. Wilbur and E. C. Mitchell, “Solar Absorption Air Conditioning Alternatives”, Solar Energy, Vol. 17, No. 3, pp. 193-199, 1975.
[12]. B. H. Jennings, “The Thermodynamics Properties of Ammonia Water Mixtures: a Reassessment in Tabular Format”, ASHRAE Trans., Vol.87, part 2, pp.419-433, 1981.
[13]. M. A. Eisa, P. J. Diggory, and F. A. Holland, “Experimental Studies to Determine the Effect of Differences in Absorber and Condenser Temperatures on the Performance of a Water-Lithium Bromide Absorption Cooler”, Energy Convers. & Mgmt, Vol. 27, No.2, pp.253-259, 1987.
[14]. C. F. Beaton and G. H. Hweitt, “Physical Properties Data for Design Engineering”, Hemisphere, New York, 1989.
[15]. Patek and J. Klomfar, “Simple Functions for Fast Calculations of Selected Thermodynamics Properties of the Ammonia-Water System”, Vol. 18, No. 4, pp.228-234, 1995.
[16]. A. Coronas, “Refrigeration Absorption Cycles Using an Auxiliary Fluid”, Applied Energy, Vol. 51, pp.69-85, 1995.
[17]. A. T. Bulgan, “Using of Low Temperature Energy Sources in Aqua-Ammonia Absorption Refrigeration Systems”, Energy Conversion and Management, Vol.38, No.14, pp. 1431-1438, 1997.
[18]. I. Horuz, “A comparison between Ammonia-Water and Water-Lithium Bromide Solutions in Vapor Absorption Refrigeration Systems”, Int. Comm. Heat Mass Transfer, Vol. 25, No. 5, pp. 711-721, 1998.
[19]. D. W. Sun, “Comparison for the Performances of NH3-H2O, NH3-LiNO3 and NH3-NASCN Absorption Refrigeration System”, Energy Convers. & Mgmt., Vol. 39, No. 5/6, pp. 375-368, 1998.
[20]. P. Srikhirin, S. Aphornratans and S. Chungpaibulpatana, "A review of absorption technologies", Renewable and Sustainable Energy Reviews, Vol.5, pp.343-372, 2001.
[21]. I. Horuz and T.M.S. Callander, "Experimental Investigation of Vapor Absorption Refrigeration System", Int. J. of Refrigeration, Vol. 27, pp. 10-16, 2004.
[22]. Nover Cube Corporation:http://www.novel-hotel.com/
[23]. M. P. Boyce, “The Utilization of Internal Combustion Exhaust Gases for Air Condition”, Entersociety Energy Conversion Engineering Conference Proceedings, pp. 38, 1971.
[24]. F. Xu, D. Y. Goswami and S. S. Bhagwat, “A Combined Power/Cooling Cycle”, Energy, Vol. 25, pp. 233-246, 2000.
[25]. X.Q. Kong, R.Z. Wang,“Energy optimization model for a CCHP system with available gas turbines”,Applied Thermal Engineering, Vol. 25, pp. 377-391, 2004.
[26]. D.W. Wu, R.Z. Wang, “Combined cooling, heating and power: A review”, Progress in Energy and Combustion Science, Vol.32, pp. 459-495, 2006.
[27]. 蔡嘉晉,“發生器對小型氨水型吸收式冷凍系統之性能影響研究”,國立台灣大學機械工程研究所碩士論文,2007年6月。
[28]. Janilson Arcangelo Rossa, Edson Bazzo, “Thermodynamic Modeling of an Ammonia-Water Absorption System Associated with a Microturbine”, Int. J. of Thermodynamics, Vol.12, pp. 38-43, 2009.
[29]. 黃武彬,“固態氧化物燃料電池(SOFC)結合氣渦輪機(GT)應用於冷熱電聯產系統(CCHP)中之配置設計與性能分析”,國立清華大學動力機械工程學系碩士論文,2010年7月。
[30]. Industrial Refrigeration Consortium, “Properties of R-717 (Anhydrous Ammonia)”, University of Wisconsing, 2005.
[31]. Incropera DeWitt Bergman Lavine, “Fundamentals of Heat and Mass Transfer”, Wiley sixth edition, pp.137-153, 2007.
[32]. Lesson 17 Vapour Absorption Refrigeration Systems Based On Ammonia-Water Pair, Version 1 ME, HVAC Handbook IIT Kharagpur.
[33]. JetCat Corporation:http://www.jetcatusa.com/
[34]. M. Zipperer GmbH, “Lieferprogramm”, Ingenieurburo Cat, Germany, 2012.
[35]. Giuseppe Starace, Lorenzo De Pascalis, “An enhaced model for the design of Diffusion Absorption Refrigerators”, International Journal of Refrigeration, vol. 36, pp.1495-1503, 2013.
[36]. D. W. Sun, “Thermodynamic design data and optimum design maps for absorption refrigeration systems", Applied Thermal Engineering, Vol. 17, No. 3, pp. 211-221, 1997.
[37]. 經濟部能源局,“冷凍冷藏節能應用技術手冊",100年12月。
[38]. 台灣中油股份有限公司:http://www.cpc.com.tw/
[39]. 經濟部能源委源會,“便利商店節能技術手冊",2011年。
[40]. 郭柏巖,“住宅耗電時測解析與評估系統之研究",國立成功大學建築研究所博士論文,2005年1月。