研究生: |
林容靖 Lin, Rong Jing |
---|---|
論文名稱: |
銅金屬催化氧化性的波瓦羅夫反應和合成新穎氮化矽薄膜前驅物 Copper-Catalyzed Oxidative Povarov Reactions and Synthesis of Novel Precursors of Silicon Nitride Film |
指導教授: |
劉瑞雄
Liu, Rai Shung |
口試委員: |
劉瑞雄
Liu, Rai Shung 蔡易州 Tsai, Yi Chou 吳明忠 Wu, Ming Jung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 波瓦羅夫反應 、銅催化 、sp3 碳氫鍵活化 、環化加成 、原子層沉積 |
外文關鍵詞: | Povarov reaction, copper catalysis, sp3 C-H bond activation, cycloaddition, atomic layer deposition |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文分為兩個章節,第一章是利用銅金屬催化N-烷基N-甲基苯胺與飽和雜環的波瓦羅夫反應。第二章探究新穎前驅物之合成以及原子層沉積技術生成氮化矽膜。
第一章
我們以過氧化叔丁醇作為氧化劑,對於N-烷基N-甲基苯胺類化合物以及飽和的氧雜環或硫雜環在銅金屬催化下,進行氧化性的波瓦羅夫反應,得到四氫喹啉衍生物,且這類反應的起始物不再需使用4π或是2π作為環化加成的模板,取而代之的是價廉的烷類化合物作為建構單元,神奇的將兩個惰性的sp3 C-H鍵被活化,此為有機合成反應的重大突破。
第二章
有鑑於原子層沉積反應的廣泛應用,本研究目標利用原子層沉積生成氮化矽薄膜,因此設計前驅物結構,並以簡單而花費不高的方法合成,這兩個新穎的金屬前驅物是接有四個相同取代基的矽化物,然而受限於設備尚不全,沒法將其與 NH3 進行原子層沉積反應,故先以 H2O 與前驅物 II-1a 測試,但水蒸氣與前驅物 II-1a 的反應效果不佳,因而本研究將著手改良前驅物之結構,並期待後續實驗室同仁將所合成之前驅物逐一與氨氣進行 ALD 製程。
Abstract
This thesis is divided into two sections, the first chapter is copper-catalyzed Povarov reaction between N-alkyl N-methylaniline and saturated heterocyclic ring. The second chapter explores synthesis the novel precursors and then uses atomic layer deposition technology to grow silicon nitride film.
Chapter 1
We develop Cu-catalyzed oxidative Povarov reactions between N-alkyl N-methylanilines and saturated oxa- or thiacycles with tert-butyl hydroperoxide (TBHP). Importantly, these reactions do not involve [4π] or [2π] motifs as the initial reagents. The use of cheap alkane-based substances as building units is of mechanistic and practical interest as two inert sp3 C–H bonds are activated.
Chapter 2
Given the widespread use of atomic layer deposition reaction, our goal is to generate silicon nitride film by ALD. Therefore, we design the structure of the precursors, and synthesize two novel metal precursor with four identical substituents of silicon. We use simple way to achieve the synthesis. However, limited by equipment incomplete, there is no way to use new precursors with NH3 undergoing atomic layer deposition reaction, so we use H2O to test. But the test result of ALD by using precursor II-1a and H2O is not good. My laboratory colleagues are working on improving the structure of the precursor. Once the equipment complete, we will use our novel precursors with ammonia by ALD processes one by one.
第一章
[1] Sridharan, V.; Suryavanshi, P. A.; Menéndez, J. C. Chem. Rev. 2011, 111, 7157–7259.
[2] (a) Povarov, L. S. Russ. Chem. Rev. 1967, 36, 656-670. (b) Kouznetsov, V. V., Tetrahedron 2009, 65, 2721-2750. (c) Bello, D.; Ramón, R.; Lavilla, R. Curr. Org. Chem. 2010, 14, 332-356. (d) McCarrick, M. A.; Wu, Y. D.; Houk, K. N. J. Org. Chem. 1993, 58, 3330-3343. (e) Whiting, A.; Windsor, C. M. Tetrahedron 1998, 54, 6035-6050.
[3] For azacyclic cycloadducts, see selected papers: (a) Doyle, M. P.; Yan, M.; Hu, W.; Gronenberg, L. J. Am. Chem. Soc. 2003, 125, 4692-4693. (b) Barluenga, J.; Lonzi, G.; Riesgo, L.; Lpez, L. A.; Toas, M. J. Am. Chem. Soc. 2010, 132, 13200-13202. (c) Yan, M.; Jacobsen, N.; Hu, W.; Gronenberg, L. S.; Doyle, M. P.; Colyer, J. T.; Bykowski, D. Angew. Chem. Int. Ed. 2004, 43, 6713-6716. (d) Wang, X.; Xu, X.; Zavalij, P.; Doyle, M. P. J. Am. Chem. Soc. 2011, 133, 16402-16405.
[4] Zhou, L.; Doyle, M. P. J.Org. Chem. 2009, 74, 9222-9224.
[5] Gharpure, S. J.; Sathiyanarayanan, A. M.; Vuram, P. K. RCS Advances 2013, 3, 18279-18282.
[6] For Povarov reactions catalyzed by Bronsted acids, see selected examples: (a) Akiyama, T.; Morita, H.; Fuchibe, K. J. Am. Chem. Soc. 2006, 128, 13070-13071. (b) Xu, H.; Zuend, S. J.; Woll, M. G.; Tao, Y.; Jacobson, E. N. Science 2010, 327, 986-990. (c) Liu, H.; Dagousset, G.; Masson, G.; Retailleau, P.; Zhu, J. J. Am. Chem. Soc. 2009, 131, 4598-4599. (d) Dagousset, G.; Zhu, J.; Masson G. J. Am. Chem. Soc. 2011, 133, 14804-14813.
[7] Richter, H.; Mancheno, O. G. Org. Lett. 2011, 13, 6066-6069.
[8] We noted a recent work of Sun and coworkers involving photoinitiated oxidation of THF solvent under air to generate 2,3-dihydrofuran species; but the other reactant is still a reactive heterodyne. The product yields were moderate (40-50%) for most instances using THF as a nucleophile. Guo, H.; Zhu, C.; Li, J.; Xu, G.; Sun, J. Adv. Synth. Catal. 2014, 356, 2801-2806.
[9] Huang, L.; Zhang, X.; Zhang, Y. Org. Lett. 2009, 11, 3730–3733.
[10] (a) Min C.; Asnchawala A.; Seidel D. Org. Lett. 2014, 16, 2756–2759.; (b) Murata S.; Miura M.; Nomura M. J. Org. Chem. 1989, 54, 4700–4702. (c) Murahashi S.-I.; Naota T.; Miyaguchi N.; Nakato T. Tetrahedron Lett. 1992, 33, 6991–6994.
[11] Thermal decomposition of TBHP without metal catalyst can proceed at 120 oC whereas the temperature was 90 oC for eq 1. See: He T.; Zhang L.; Wang, L.; Wang, M. Org. Lett. 2011, 13, 5016–5019.
[12] (a) For Povarov reaction using amines, aldehydes and alkenes in non-acqueous solution, see selected examples: Kobayashi, S.; Nagayama, S. J. Am. Chem. Soc. 1996, 118, 8977-8978. (b) Boglio, C.; Lemiére, G.; Hasenknopf, B.; Thorimbert, S.; Lacôte, E.; Malacria, M. Angew. Chem., Int. Ed. 2006, 45, 3324-3327.
[13] For the generation of THF radicals from the M-TBHP system (M = Cu(I), Ni(II) and iodide), see recent examples: (a) Liu, D.; Liu, C.; Lei, A. Chem. Commun. 2014, 50, 3623-3626. (b) Zhao, L.; Tang, S.; Qi, X.; Lin, C.; Lin, C.; Liu, K.; Liu, Y.; Lei, A. Org. Lett. 2014, 16, 3404-3407. (c) Liu, D.; Liu, C.; Li, H.; Lei, A. Angew. Chem., Int. Ed. 2013, 52, 4453-4456 (d) Chen, L.; Shi, E.; Liu, Z.; Chen, S.; Wei, W.; Li, H.; Xu, K.; Wan, X. Chem. – Eur. J. 2011, 17, 4085-4089. (e) Dian, L.; Wang, S.; Zhang-Negrerie, D.; Du, Y.; Zhao, K. Chem. Commun. 2014, 50, 11738-11741. (f) Rout, S. K.; Guin, S.; Ali, W.; Gogoi, A.; Patel, B. K. Org. Lett. 2014, 16. 3086-3089
[14] For Cu-catalyzed C-H bond functionalizations; see selected reviews: (a) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed. 2014, 53, 74-100. (b) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem. Int. Ed. 2011, 50, 11062-11087. (c) Klussmann, M.; Sureshkumar, D. Synthesis 2011, 43, 353-369. (d) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Chem. Rev. 2011, 111, 1780-1824. (e) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464-3484.
第二章
[1] Aarik L., Arroval T., Rammula R., Mandar H., Sammelselg V., Aarik J., Thin Solid Films 2013, 542, 100-107
[2] Hsueh, Y. C., Wang, C. C., Kei C. C., Lin Y. H., L. J. Catal. 2012, 294, 63-68
[3] Burton B. B., Kang S. W., Rhee S. W., George S. M. J. Phys. Chem. C 2009, 113, 8249-8257
[4] Jang W., Jeon H., Kang C., Song H., Park J., Kim H., Seo H., Leskela M., Jeon H. Phys. Status Solidi 2014, 211, 2166-2171