簡易檢索 / 詳目顯示

研究生: 劉翼鳴
Liu, I-Ming
論文名稱: 烏賊是否了解「相同」的抽象概念?
Do cuttlefish know the concept of sameness?
指導教授: 焦傳金
Chiao, Chuan-Chin
口試委員: 楊恩誠
Yang, En-Cheng
林思民
Lin, Si-Min
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 系統神經科學研究所
Institute of Systems Neuroscience
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 55
中文關鍵詞: 頭足類學習認知功能延遲樣本配對法工作記憶
外文關鍵詞: cephaloopod, learning and memory, cognitive function, delayed matching-to-sample, working memory
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 「暸解抽象概念」為一複雜且高階的認知能力,並一直被認為目前是只有人類或是在靈長動物、及鳥類等脊椎動物才擁有的能力。然而在2001年的研究發現,蜜蜂能夠經由訓練學習「相同」與「相異」的抽象概念,並能將此概念在不同的感知系統中互相轉換,該結果顯示,並非只有複雜神經系統的動物才能具有高階的認知功能。烏賊是軟體動物門、頭足綱中的一屬,有著高度分化的中樞神經系統與敏銳的視覺,且其行為十分仰賴視覺訊息。據此,本研究假設:如此依賴視覺且擁有遠比蜜蜂更加複雜之腦部構造的無脊椎動物,應有與靈長動物、鳥類及蜜蜂相近的認知能力。本研究以「延遲配對樣本法」 訓練及測試虎斑烏賊是否瞭解「相同」的抽象概念。實驗方式是讓烏賊對三維度迷宮的底部圖案進行選擇,並以迴避懲罰來進行制約,以訓練烏賊選擇牠先前看過的圖案。一旦烏賊達到學習標準,便會以全新一組圖案測驗烏賊是否能夠確實暸解「相同」的抽象概念。烏賊在訓練過程無達到學習標準,且對圖案的選擇是依據其天生的偏好來進行選擇。為確定烏賊能夠以「延遲配對樣本法」進行訓練,同一批烏賊以同樣的步驟進行,唯一的不同點在於控制組實驗當中,烏賊僅需要選擇與牠所偏好相反的圖案便不會被懲罰。控制組實驗結果顯示,僅一隻烏賊可以達到學習標準。而該烏賊在達到標準後,測驗其圖案偏好是否在控制組實驗中被改變,結果顯示,當烏賊在選圖案前若沒有事先看過圖案,則牠選擇的依據仍是基於其天生的圖案偏好。綜合以上結果,在現行的實驗條件下,無法驗證假說――烏賊有暸解「相同」的抽象概念的能力。但少數烏賊仍可以與其他動物 完成「延遲配對樣本」試驗顯示烏賊有工作記憶系統,且工作記憶系統對於烏賊的生存有著舉足輕重的必要性。


    Concept formation has long been considered as a complex cognitive behavior that only exists in vertebrates, e.g., mammals and birds. But a previous study has shown that honeybees, an invertebrate with a simpler brain, also possess the ability of knowing the sameness and difference in visual and olfactory modalities. In the present study, we hypothesized that cuttlefish (Sepia pharaonis), a marine invertebrate with keen vision, complex central nervous system, and exhibiting sophisticated behaviors, share a great convergence of cognitive functions that are similar to those found in vertebrates and insects. To examine if cuttlefish could learn the concept of sameness, a 3-D maze was developed to apply the delayed matching-to-sample (DMTS) paradigm. At the bottom part of the maze, cuttlefish were trained to match the same background pattern (secondary pattern) after seeing the pattern (primary pattern) at the upper part of the maze. The learning criterion, with statistical significance, was set to assess if cuttlefish were able to extract the rule of sameness through the training. Once cuttlefish reached the learning criterion, the transfer test was proceeded to exam if cuttlefish could apply the rule of sameness when they encountered a new pattern pair. Cuttlefish failed to reach the criterion in the training phase. Their choices to the background pattern were biased to their innate preferences. We conducted a control experiment to confirm the failure of training was not because cuttlefish were unable to succeed in the DMTS task. One out of five animals passed the criterion in the control experiment with only 23 trials, and this criterion-reached animal chose the background pattern according to its innate preference in absence of the primary pattern. Individual cuttlefish solving the DMTS task suggests that cuttlefish might be able to associate the background pattern with what they have seen previously, and this implies that cuttlefish possess the short-lasting memory, or the working memory. In summary, we conclude that cuttlefish are unable to learn the abstract concept under current experimental condition, but cuttlefish are able to solve the DMTS task and possess the visual working memory.

    誌謝 2 摘要 4 Abstract 5 Table of Content 6 List of Table 7 List of Figure 8 Chapter 1: Introduction 9 Chapter 2: Materials and Methods 14 2.1 Subjects 14 2.2 Apparatus 14 2.3 Patterns 15 2.4 Procedure 15 Chapter 3: Results 18 3.1 Training 18 3.2 The Control experiment 18 3.3 The temporal capacity of visual working memory 19 Chapter 4: Discussion 20 Reference 25 Appendix 46

    Allen JJ, Mathger LM, Barbosa A, Hanlon RT (2009) Cuttlefish use visual cues to control three-dimensional skin papillae for camouflage. Journal of Comparative Physiology A 195:547-555.
    Anderson RC, Mather JA, Monette MQ, Zimsen SR (2010) Octopuses (Enteroctopus dofleini) recognize individual humans. Journal of Applied Animal Welfare Science 13:261-272.
    Baddeley A (2003) Working memory: looking back and looking forward. Naturet Reviews Neuroscience 4:829-839.
    Barbosa A, Allen JJ, Mathger LM, Hanlon RT (2012) Cuttlefish use visual cues to determine arm postures for camouflage. Proceedings of The Royal Society Biology 279:84-90.
    Barbosa A, Mäthger LM, Buresch KC, Kelly J, Chubb C, Chiao C-C, Hanlon RT (2008) Cuttlefish camouflage: The effects of substrate contrast and size in evoking uniform, mottle or disruptive body patterns. Vision Research 48:1242-1253.
    Bateson M, Desire S, Gartside Sarah E, Wright Geraldine A (2011) Agitated honeybees exhibit pessimistic cognitive biases. Current Biology 21:1070-1073.
    Boal JG (1991) Complex learning in Octopus bimaculoides. American Malacological Bulletin 9:75-80.
    Boal JG, Dunham AW, Williams KT, Hanlon RT (2000) Experimental evidence for spatial learning on octopuses (Octopus bimaculoides). Journal of Comparative Psychology 114:246-252.
    Bolhuis JJ, Giraldeau LA (2005) The Behavior of Animals: Mechanisms, Function and Evolution: Wiley.
    Chiao C-C, Hanlon RT (2001) Cuttlefish camouflage: visual perception of size, contrast and number of white squares on artificial checkerboard substrata initiates disruptive coloration. Journal of Experimental Biology 204:2119-2125.
    Cowan N, Elliott EM, Scott Saults J, Morey CC, Mattox S, Hismjatullina A, Conway AR (2005) On the capacity of attention: its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology 51:42-100.
    D'Amato MR, Salmon DP, Colombo M (1985) Extent and limits of the matching concept in monkeys (Cebus apella). Journal of Experimental Psychology: Animal Behavior Processes 11:35-51.
    Dilly PN (1963) Delayed responses in octopus. Journal of Experimental Biology 40:393-401.
    Drew T, Vogel EK (2009) Working memory: Capacity limitations. Encyclopedia of Neuroscience (Squire LR, ed), pp 523-531. Oxford: Academic Press.
    Enkel T, Gholizadeh D, von Bohlen Und Halbach O, Sanchis-Segura C, Hurlemann R, Spanagel R, Gass P, Vollmayr B (2010) Ambiguous-cue interpretation is biased under stress- and depression-like states in rats. Neuropsychopharmacology 35:1008-1015.
    Fiorito G, Scotto P (1992) Observational learning in Octopus vulgaris. Science 256:545-547.
    Fiorito G, von Planta C, Scotto P (1990) Problem solving ability of Octopus vulgaris Lamarck (Mollusca, Cephalopoda). Behavioral and Neural Biology 53:217-230.
    Fujita K (1983) Formation of the sameness-difference concept by Japanese monkeys from a small number of color stimuli. Journal Experimental Analysis of Behavior 40:289-300.
    Giurfa M, Zhang S, Jenett A, Menzel R, Srinivasan MV (2001) The concepts of 'sameness' and 'difference' in an insect. Nature 410:930-933.
    Gutnick T, Byrne RA, Hochner B, Kuba M (2011) Octopus vulgaris uses visual information to determine the location of its arm. Current Biology 21:460-462.
    Hanlon RT, Messenger JB (1996) Cephalopod Behaviour: Cambridge University Press.
    Harding EJ, Paul ES, Mendl M (2004) Animal Behaviour: Cognitive bias and Affective State. Nature 427:312-312.
    Herman LM, Gordon JA (1974) Auditory delayed matching in the bottlenose dolphin. Journal of Experimental Analysis of Behavior 21:19-26.
    Hochner B (2008) Octopuses. Current Biology 18:R897-898.
    Huang K-L, Chiao C-C (2013) Can cuttlefish learn by observing others? Animal Cognition 16:313-320.
    Hvorecny LM, Grudowski JL, Blakeslee CJ, Simmons TL, Roy PR, Brooks JA, Hanner RM, Beigel ME, Karson MA, Nichols RH, Holm JB, Boal JG (2007) Octopuses (Octopus bimaculoides) and cuttlefishes (Sepia pharaonis, S. officinalis) can conditionally discriminate. Animal Cognition 10:449-459.
    Jozet-Alves C, Chichery R, Boal JG, Dickel L (2007) Orientation in the cuttlefish Sepia officinalis: response versus place learning. Animal Cognition 10:29-36.
    Jozet-Alves C, Bertin M, Clayton NS (2013) Evidence of episodic-like memory in cuttlefish. Current Biology 23:R1033-R1035.
    Karson MA, Boal JG, Hanlon RT (2003) Experimental evidence for spatial learning in cuttlefish (Sepia officinalis). Journhal of Comparative Psychology 117:149-155.
    Mather JA (1991) Navigation by spatial memory and use of visual landmarks in octopuses. Journal of Comparative Physiology A 168:491-497.
    Messenger JB (1968) The visual attack of the cuttlefish, Sepia officinalis. Animal Behaviour 16:342-357.
    Messenger JB (1981) Comparative Physiology of Vision in Molluscs.
    Nixon M, Young JZ (2003) The Brains and Lives of Cephalopods: Oxford University Press.
    Oden DL, Thompson RK, Premack D (1990) Infant chimpanzees spontaneously perceive both concrete and abstract same/different relations. Child Development 61:621-631.
    Penn DC, Holyoak KJ, Povinelli DJ (2008) Darwin's mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences 31:109-130.
    Postle BR, Pasternak T (2009) Short Term and Working Memory. Encyclopedia of Neuroscience (Squire LR, ed), pp 783-789. Oxford: Academic Press.
    Robinson JS (1955) The sameness-difference discrimination problem in chimpanzee. Journal of comparative and physiological psychology 48:195-197.
    Shettleworth SJ (2010) Cognition, evolution, and behavior, 2nd Edition. Oxford ; New York: Oxford University Press.
    Sutherland NS (1957) Shape discrimination in the octopus. Nature 179:1310.
    Sutherland NS (1962) Visual discrimination of shape by Octopus: squares and crosses. Journal of comparative and physiological psychology 55:939-943.
    Sutherland NS (1969) Shape discrimination in rat, octopus, and goldfish: a comparative study. Journal of comparative and physiological psychology 67:160-176.
    Thomas RK (1996) Investigating cognitive abilities in animals: unrealized potential. Brain research. Cognitive brain research 3:157-166.
    Thomas RK, Frost T (1983) Oddity and dimension-abstracted oddity (DAO) in squirrel monkeys. American Journal of Psychology 96:51-64.
    Thomas RK, Noble LM (1988) Visual and olfactory oddity learning in rats: What evidence is necessary to show conceptual behavior? Animal Learning & Behavior 16:157-163.
    Wells MJ (1964) Detour experiments with octopuses. Journal of Experimental Biology 41:621-642.
    Wells MJ (1967) Short-term learning and interocular transfer in detour experiments with octopuses. Journal of Experimental Biology 47:393-408.
    Wells MJ, Young JZ (1968) Learning with delayed rewards in Octopus. Zeitschrift fur Vergleichende Physiologie 61:103-128.
    Wilson B, Mackintosh NJ, Boakes RA (1985) Transfer of relational rules in matching and oddity learning by pigeons and corvids. The Quarterly Journal of Experimental Psychology 37B:313-332.
    Young JZ (1971) The anatomy of the nervous system of Octopus vulgaris. Oxford: Clarendon Press.
    Zentall TR, Hogan E (1978) Same/different concept learning in the pigeon: the effect of negative instances and prior adaptation to transfer stimuli. Journal of Experimental Analysis of Behavior 30:177-186.
    Zhang S, Bock F, Si A, Tautz J, Srinivasan MV (2005) Visual working memory in decision making by honey bees. Proceedings of the National Academy of Sciences 102:5250-5255.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE