研究生: |
蔡欣妤 |
---|---|
論文名稱: |
探討熱治療於腫瘤微環境的影響及評估巨噬細胞吞噬能力 Effects of thermotherapy on tumor microenvironment and the ability of phagocytosis of macrophages |
指導教授: | 江啟勳 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | 熱治療 、超順磁性奈米粒子 、腫瘤微環境 、巨噬細胞 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱治療在腫瘤治療上除了作為輔助療法,其優點也逐漸被重視並持續發展。本研究利用超順磁性奈米粒子以及交替磁場於腫瘤局部進行熱治療,並將放射治療與熱治療進行結合,探討腫瘤微環境的改變。結果顯示,熱治療的確具有抑制腫瘤生長的效果,增加腫瘤壞死面積、促使腫瘤巨噬細胞(Tumor associated macrophage)及表現Gr-1細胞表面抗原的嗜中性白血球細胞浸潤。搭配放射治療時抑制腫瘤效果更好,亦可對血管分布及型態上個別有破壞的效果。由上述結果可得知,熱治療不論單獨使用或作為輔助療法皆可改變腫瘤微環境,並促使免疫細胞浸潤。未來希望能利用腫瘤巨噬細胞攜帶超順磁性奈米粒子進入腫瘤中,利用核磁共振進行影像照影以及利用交替磁場給予熱治療,達到檢測及治療的效果,因此利用RAW264.7、BV2及小鼠腹腔巨噬細胞探討其吞噬能力及奈米粒子滯留於細胞內時間,以及缺氧環境對巨噬細胞吞噬能力的影響。實驗結果顯示,上述細胞皆具有吞噬能力,並且奈米粒子存在於細胞內的時間可長達19個小時以上,至於缺氧環境則可增進細胞的吞噬能力。
Alizadeh, D., Zhang, L.Y., Hwang, J., Schluep, T., and Badie, B. (2010). Tumor-associated macrophages are predominant carriers of cyclodextrin-based nanoparticles into gliomas. Nanomedicine-Nanotechnology Biology and Medicine 6, 382-390.
Allen, T.M., and Cullis, P.R. (2004). Drug delivery systems: Entering the mainstream. Science 303, 1818-1822.
Anand, R.J., Gribar, S., Kohler, J., Branca, M., Sodhi, C., and Hackam, D. (2007a). Systemic hypoxia causes an increase in phagocytosis by peritoneal macrophages in a HIF-1 alpha dependent manner. Journal of the American College of Surgeons 205, S32-S32.
Anand, R.J., Gribar, S.C., Li, J., Kohler, J.W., Branca, M.F., Dubowski, T., Sodhi, C.P., and Hackam, D.J. (2007b). Hypoxia causes an increase in phagocytosis by macrophages in a HIF-1 alpha-dependent manner. Journal of Leukocyte Biology 82, 1257-1265.
Baronzio, G., Gramaglia, A., and Fiorentini, G. (2006). Hyperthermia and Immunity. A Brief Overview. In Vivo 20, 689-695.
Basu, S., and Srivastava, P.K. (2003). Fever-like temperature induces maturation of dendritic cells through induction of hsp90. Int Immunol 15, 1053-1061.
Bingle, L., Brown, N.J., and Lewis, C.E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. The Journal of Pathology 196, 254-265.
Brannon-Peppas, L. (2004). Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews 56, 631-651.
Callahan, M.K., Wohlfert, E.A., Menoret, A., and Srivastava, P.K. (2006). Heat shock up-regulates lmp2 and lmp7 and enhances presentation of immunoproteasome-dependent epitopes. Journal of Immunology 177, 8393-8399.
Champion, J.A., and Mitragotri, S. (2006). Role of target geometry in phagocytosis. Proceedings of the National Academy of Sciences of the United States of America 103, 4930-4934.
Chang, I.P., Hwang, K.C., and Chiang, C.-S. (2008). Preparation of Fluorescent Magnetic Nanodiamonds and Cellular Imaging. Journal of the American Chemical Society 130, 15476-15481.
Chen, F.H., Chiang, C.S., Wang, C.C., Tsai, C.S., Jung, S.M., Lee, C.C., McBride, W.H., and Hong, J.H. (2009). Radiotherapy Decreases Vascular Density and Causes Hypoxia with Macrophage Aggregation in TRAMP-C1 Prostate Tumors. Clinical Cancer Research 15, 1721-1729.
Dewhirst, M.W., Viglianti, B.L., Lora-Michiels, M., Hanson, M., and Hoopes, P.J. (2003). Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. International Journal of Hyperthermia 19, 267.
Diederich, C.J. (2005). Thermal ablation and high-temperature thermal therapy: Overview of technology and clinical implementation. International Journal of Hyperthermia 21, 745-753.
Dieing, A., Ahlers, O., Hildebrandt, B., Kerner, T., Tamm, I., Possinger, K., and Wust, P. (2007). The effect of induced hyperthermia on the immune system. Neurobiology of Hyperthermia 162, 137-152.
Fattorossi, A., Nisini, R., Pizzolo, J.G., and Damelio, R. (1989). NEW, SIMPLE FLOW-CYTOMETRY TECHNIQUE TO DISCRIMINATE BETWEEN INTERNALIZED AND MEMBRANE-BOUND PARTICLES IN PHAGOCYTOSIS. Cytometry 10, 320-325.
Griffin, R.J., Dings, R.P.M., Jamshidi-Parsian, A., and Song, C.W. (2010). Mild temperature hyperthermia and radiation therapy: Role of tumour vascular thermotolerance and relevant physiological factors. International Journal of Hyperthermia 26, 256-263.
Haemmerich, D., and Laeseke, P.F. (2005). Thermal tumour ablation: Devices, clinical applications and future directions. International Journal of Hyperthermia 21, 755-760.
Hanson, D.F. (1993). Fever and the immune response. The effects of physiological temperatures on primary murine splenic T-cell responses in vitro. J Immunol 151, 436-448.
Hasday, J.D., Fairchild, K.D., and Shanholtz, C. (2000). The role of fever in the infected host. Microbes and Infection 2, 1891-1904.
Hokland, S.L., Nielsen, T., Busk, M., and Horsman, M.R. (2010). Imaging tumour physiology and vasculature to predict and assess response to heat. International Journal of Hyperthermia 26, 264-272.
Horsman, M.R. (2006). Tissue physiology and the response to heat. International Journal of Hyperthermia 22, 197-203.
Horsman, M.R., Murata, R., and Overgaard, J. (2001). Improving local tumor control by combining vascular targeting drugs, mild hyperthermia and radiation. Acta Oncol 40, 497-503.
Horsman, M.R., and Overgaard, J. (2007). Hyperthermia: a potent enhancer of radiotherapy. Clinical Oncology 19, 418-426.
Ito, A., Shinkai, M., Honda, H., and Kobayashi, T. (2005). Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering 100, 1-11.
Jackson, I.L., Batinic-Haberle, I., Sonveaux, P., Dewhirst, M.W., and Vujaskovic, Z. (2006). ROS production and angiogenic regulation by macrophages in response to heat therapy. International Journal of Hyperthermia 22, 263-273.
Jain, R.K. (2005). Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy. Science 307, 58-62.
Johannsen, M., Thiesen, B., Gneveckow, U., Taymoorian, K., Waldofner, N., Scholz, R., Deger, S., Jung, K., Loening, S.A., and Jordan, A. (2006). Thermotherapy using magnetic nanoparticles combined with external radiation in an orthotopic rat model of prostate cancer. Prostate 66, 97-104.
Johannsen, M., Thiesen, B., Jordan, A., Taymoorian, K., Gneveckow, U., Waldofner, N., Scholz, R., Koch, M., Lein, M., Jung, K., et al. (2005). Magnetic fluid hyperthermia (MFH) reduces prostate cancer growth in the orthotopic dunning R3327 rat model. Prostate 64, 283-292.
Klostergaard, J. (1989). Hyperthermic modulation of tumor necrosis factor-dependent monocyte/macrophage tumor cytotoxicity in vitro. Journal of biological response modifiers 8, 262-277.
Martin, C.A., Kurkowski, D.L., Valentino, A.M., and Santiago-Schwarz, F. (2009). Increased Intracellular, Cell Surface, and Secreted Inducible Heat Shock Protein 70 Responses Are Triggered during the Monocyte to Dendritic Cell (DC) Transition by Cytokines Independently of Heat Stress and Infection and May Positively Regulate DC Growth. Journal of Immunology 183, 388-399.
Mayer, L.D., Dougherty, G., Harasym, T.O., and Bally, M.B. (1997). The role of tumor-associated macrophages in the delivery of liposomal doxorubicin to solid murine fibrosarcoma tumors. Journal of Pharmacology and Experimental Therapeutics 280, 1406-1414.
Muthana, M., Multhoff, G., and Pockley, A.G. (2010). Tumour infiltrating host cells and their significance for hyperthermia. International Journal of Hyperthermia 26, 247-255.
Neuberger, T., Schöpf, B., Hofmann, H., Hofmann, M., and von Rechenberg, B. (2005). Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials 293, 483-496.
Petrak, K. (2006). Nanotechnology and site-targeted drug delivery. Journal of Biomaterials Science-Polymer Edition 17, 1209-1219.
Pilla, L., Patuzzo, R., Rivoltini, L., Maio, M., Pennacchioli, E., Lamaj, E., Maurichi, A., Massarut, S., Marchiano, A., Santantonio, C., et al. (2006). A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-alpha in metastatic melanoma patients. Cancer Immunology Immunotherapy 55, 958-968.
Roberts, N.J. (1979). TEMPERATURE AND HOST-DEFENSE. Microbiological Reviews 43, 241-259.
Roser, M., Fischer, D., and Kissel, T. (1998). Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. European Journal of Pharmaceutics and Biopharmaceutics 46, 255-263.
Roti, J.L.R. (2004). Introduction: Radiosensitization by hyperthermia. International Journal of Hyperthermia 20, 109-114.
Sapareto, S.A., Raaphorst, G.P., and Dewey, W.C. (1979). CELL KILLING AND THE SEQUENCING OF HYPERTHERMIA AND RADIATION. International Journal of Radiation Oncology Biology Physics 5, 343-347.
Schroder, M., and Kaufman, R.J. (2005). The mammalian unfolded protein response. Annual Review of Biochemistry 74, 739-789.
Sica, A., Schioppa, T., Mantovani, A., and Allavena, P. (2006). Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. European Journal of Cancer 42, 717-727.
Song, C.W., Park, H.J., Lee, C.K., and Griffin, R. (2005). Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. International Journal of Hyperthermia 21, 761-767.
Storm, G., Steerenberg, P.A., Emmen, F., van Borssum Waalkes, M., and Crommelin, D.J.A. (1988). Release of doxorubicin from peritoneal macrophages exposed in vivo to doxorubicin-containing liposomes. Biochimica et Biophysica Acta (BBA) - General Subjects 965, 136-145.
Thiesen, B., and Jordan, A. (2008). Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperthermia 24, 467-474.
van Bruggen, I., Robertson, T.A., and Papadimitriou, J.M. (1991). The effect of mild hyperthermia on the morphology and function of murine resident peritoneal macrophages. Experimental and Molecular Pathology 55, 119-134.
von Maltzahn, G., Park, J.H., Agrawal, A., Bandaru, N.K., Das, S.K., Sailor, M.J., and Bhatia, S.N. (2009). Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas. Cancer Res 69, 3892-3900.
Weissleder, R., Cheng, H.C., Bogdanova, A., and Bogdanov, A. (1997). Magnetically labeled cells can be detected by MR imaging. Jmri-Journal of Magnetic Resonance Imaging 7, 258-263.
Yan, X., Xiu, F., An, H., Wang, X., Wang, J., and Cao, X. (2007). Fever range temperature promotes TLR4 expression and signaling in dendritic cells. Life Sciences 80, 307-313.
Zhang, H.G., Mehta, K., Cohen, P., and Guha, C. (2008). Hyperthermia on immune regulation: A temperature's story. Cancer Letters 271, 191-204.