研究生: |
彭曉彤 Peng Xiaotong |
---|---|
論文名稱: |
垂直奈米碳管/二氧化錳複合電極材料的製備及其於超級電容上之電化學性能探討 Synthesis of Arrayed CNT/MnO2 Composite Electrode and its Electrochemical Performance for Supercapacitor. |
指導教授: |
戴念華
Nyan-Hwa Tai |
口試委員: |
郭文雄
Wen-Hsiung Kuo 林建宏 Chien-Hung Lin 李紫原 Chi-Young Lee |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 奈米碳管 、超級電容 、二氧化麼 |
外文關鍵詞: | Carbon nanotube, Supercapacitor, Manganese dioxide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用快速升降溫化學氣相沉積法製備出垂直的奈米碳管,並以電化學沉積法於奈米碳管上沉積二氧化錳,製備出垂直奈米碳管/二氧化錳複合材料。本研究探討了CNT長度、MnO2於CNT/MnO2中含量以及用以成長CNT之模板型Si基板等因素對CNT/MnO2複合電極材料電容特性的影響。
通過控制奈米碳管的成長時間來控制其長度,得到不同長度的CNT/MnO2複合物,本研究探討的長度分別為20 μm以及250 μm的CNT,發現長度較長的CNT因為導電性更佳而擁有更加高的比電容值。另外,通過控制沉積MnO2的時間來控制CNT/MnO2中MnO2的含量,發現隨著MnO2含量的增加,電極的比電容值呈現先上升後下降的趨勢。對比沉積MnO2之後不同長度的CNT/MnO2,發現長度較短的CNT/MnO2擁有更高的比電容值,其中short-CNT/MnO2(240 s)的電容值達到148 F/g,比long- CNT/MnO2 (160 s)的69 F/g高出許多。為了增加CNT與電解液的接觸面積,本研究使用黃光顯影製程以及反應性離子蝕刻製備模板型Si基板,並用上述方法製備patterned-CNT/MnO2複合電極。通過電化學分析發現,單一patterned-CNT比電容值比long-CNT以及short-CNT都高,這表明增加電極材料與電解液的接觸面積,能夠有效的提升其比電容值,而且patterned-CNT/MnO2 (80 s)的比電容值達到168 F/g。
This study successfully synthesized aligned carbon nanotube/ manganese dioxide (CNT/MnO2) composite material by rapid heating and cooling chemical vapor deposition followed by electrochemical deposition. Different lengths of CNT/MnO2 composites can be easily obtained by controlling CNT growth durations. The longer CNTs with a length of 250 μm show higher specific capacitance because they possessed higher conductivity as compared with shorter CNTs with a length of 20 μm. The content of MnO2 in the composite, simply controlled by electrochemical deposition time, affected the morphology, microstructure and the capacitive behavior of CNT/MnO2. It is found that the specific capacitance increased with MnO2 amount and decreased when longer MnO2 deposition time was used. Compared with the longer CNT/MnO2, the shorter one exhibits better capacitive behavior; the specific capacitance of short-CNT/MnO2 (240 s) reached 148 F/g which is much higher than 69 F/g of long-CNT/MnO2 (160 s). In order to increase the contact area between CNT and the electrolyte, this study prepared patterned Si substrate using photolithography and reactive ion etching and synthesized patterned-CNT/MnO2. Higher specific capacitance of patterned-CNT/MnO2 was obtained indicating that increasing the contact area could effectively improve the capacitive performance of the electrode; in addition, the patterned-CNT/MnO2 (80 s) demonstrates a high specific capacitance of 168 F/g.
[1] J. R. Miller and P. Simon, "Electrochemical Capacitors for Energy Management," Science, vol. 321, pp. 651-652, 2008.
[2] T. Christen and M. W. Carlen, "Theory of Ragone Plots," Journal of Power Sources, vol. 91, pp. 210-216, 2000.
[3] A. G. Pandolfo and A. F. Hollenkamp, "Carbon Properties and their Role in Supercapacitors," Journal of Power Sources, vol. 157, pp. 11-27, 2006.
[4] H. v. Helmholtz, "Ueber Einige Gesetze der Vertheilung Elektrischer Ströme in körperlichen Leitern mit Anwendung auf die Thierisch‐elektrischen Versuche," Annalen der Physik, vol. 165, pp. 211-233, 1853.
[5] A. M. Namisnyk, "A Survey ofElectrochemical Supercapacitor Technology," University of Technology, Sydney, 2003.
[6] O. Stern, "The Theory of the Electrolytic Double-layer," Z. Elektrochem, vol. 30, pp. 1014-1020, 1924.
[7] D. C. Grahame, "The Electrical Double Layer and the Theory of Electrocapillarity," Chemical reviews, vol. 41, pp. 441-501, 1947.
[8] H. Wang and L. Pilon, "Accurate Simulations of Electric Double Layer Capacitance of Ultramicroelectrodes," The Journal of Physical Chemistry C, vol. 115, pp. 16711-16719, 2011.
[9] S. P. Naoi. Katsuhiko, "New Materials and New Configurations for Advanced Electrochemical Capacitors," Journal of The Electrochemical Society vol. 17, pp. 34-37, 2008.
[10] Z.-z. Zhu, G.-c. Wang, M.-q. Sun, X.-w. Li, and C.-z. Li, "Fabrication and Electrochemical Characterization of Polyaniline Nanorods Modified with Sulfonated Carbon Nanotubes for Supercapacitor Applications," Electrochimica Acta, vol. 56, pp. 1366-1372, 2011.
[11] E. Frackowiak and F. Béguin, "Carbon Materials for the Electrochemical Storage of Energy in Capacitors," Carbon, vol. 39, pp. 937-950, 2001.
[12] K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, M. Reda, J. Parmentier, et al., "Capacitance Properties of Ordered Porous Carbon Materials Prepared by a Templating Procedure," Journal of Physics and Chemistry of Solids, vol. 65, pp. 287-293, 2004.
[13] Z. G. Cambaz, G. N. Yushin, Y. Gogotsi, K. L. Vyshnyakova, and L. N. Pereselentseva, "Formation of Carbide-Derived Carbon on β-Silicon Carbide Whiskers," Journal of the American Ceramic Society, vol. 89, pp. 509-514, 2006.
[14] TalapatraS, KarS, S. K. Pal, VajtaiR, CiL, VictorP, et al., "Direct Growth of Aligned Carbon Nanotubes on Bulk Metals," Nat Nano, vol. 1, pp. 112-116, 2006.
[15] E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros, and F. Béguin, "Enhanced Capacitance of Carbon Nanotubes through Chemical Activation," Chemical Physics Letters, vol. 361, pp. 35-41, 2002.
[16] A. K. Geim and K. S. Novoselov, "The Rise of Graphene," Nat Mater, vol. 6, pp. 183-191, 2007.
[17] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, et al., "Supercapacitor Devices Based on Graphene Materials," The Journal of Physical Chemistry C, vol. 113, pp. 13103-13107, 2009.
[18] N. Li, S. Tang, Y. Dai, and X. Meng, "The Synthesis of Graphene Oxide Nanostructures for Supercapacitors: a Simple Route," Journal of Materials Science, vol. 49, pp. 2802-2809, 2014.
[19] Y. Cai, Y. Wang, S. Deng, G. Chen, Q. Li, B. Han, et al., "Graphene Nanosheets-tungsten Oxides Composite for Supercapacitor Electrode," Ceramics International, vol. 40, pp. 4109-4116, 2014.
[20] H. Lee, M. S. Cho, I. H. Kim, J. D. Nam, and Y. Lee, "RuOx/polypyrrole Nanocomposite Electrode for Electrochemical Capacitors," Synthetic Metals, vol. 160, pp. 1055-1059, 2010.
[21] M. Toupin, T. Brousse, and D. Bélanger, "Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor," Chemistry of Materials, vol. 16, pp. 3184-3190, 2004.
[22] K. L. Levine, "Synthesis, Characterization and Properties of Polypyrrole/polyimides Composites," University of Cincinnati, 2002.
[23] K. Chen and D. Xue, "Water-soluble Inorganic Salt with Ultrahigh Specific Capacitance: Ce(NO3)3 can be Designed as Excellent Pseudocapacitor Electrode," Journal of Colloid and Interface Science, vol. 416, pp. 172-176, 2014.
[24] A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical Methods: Fundamentals and Applications vol. 2: Wiley New York, 1980.
[25] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, "Nanotubes Physics of Carbon Nanotubes," Carbon, vol. 33, pp. 883-891, 1995.
[26] P. L. McEuen, M. S. Fuhrer, and H. Park, "Single-walled Carbon Nanotube Electronics," IEEE Transactions on Nanotechnology, vol. 1, pp. 78-85, 2002.
[27] T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, "Atomic Structure and Electronic Properties of Single-walled Carbon Nanotubes," Nature, vol. 391, pp. 62-64, 1998.
[28] A. Szabó, C. Perri, A. Csató, G. Giordano, D. Vuono, and J. B. Nagy, "Synthesis Methods of Carbon Nanotubes and Related Materials," Materials, vol. 3, pp. 3092-3140, 2010.
[29] C.-C. Chiu, T.-Y. Tsai, N.-H. Tai, and C.-Y. Lee, "Synthesis of Ultra Long Vertically Aligned Carbon Nanotubes Using the Rapid Heating and Cooling System in the Thermal Chemical Vapor Deposition Process," Surface and Coatings Technology, vol. 200, pp. 3215-3219, 2006.
[30] M. Kumar and Y. Ando, Carbon Nanotube Synthesis and Growth Mechanism: INTECH Open Access Publisher, 2011.
[31] H. Zhang, G. Cao, Y. Yang, and Z. Gu, "Comparison Between Electrochemical Properties of Aligned Carbon Nanotube Array and Entangled Carbon Nanotube Electrodes," Journal of the Electrochemical Society, vol. 155, pp. K19-K22, 2008.
[32] M. Saghafi, F. Mahboubi, S. Mohajerzadeh, and R. Holze, "Preparation of Vertically Aligned Carbon Nanotubes and their Electrochemical Performance in Supercapacitors," Synthetic Metals, vol. 195, pp. 252-259, 2014.
[33] K. H. An, W. S. Kim, Y. S. Park, H. J. Jeong, Y. C. Choi, J.-M. Moon, et al., "Supercapacitors Using Singlewalled Carbon Nanotube Electrodes," in NANONETWORK MATERIALS: Fullerenes, Nanotubes, and Related Systems, 2001, pp. 241-244.
[34] X. Zhao, B. T. Chu, B. Ballesteros, W. Wang, C. Johnston, J. M. Sykes, et al., "Spray Deposition of Steam Treated and Functionalized Single-walled and Multi-walled Carbon Nanotube Films for Supercapacitors," Nanotechnology, vol. 20, pp. 065605-065611, 2009.
[35] B. Wang, X. Fang, H. Sun, S. He, J. Ren, Y. Zhang, et al., "Fabricating Continuous Supercapacitor Fibers with High Performances by Integrating All Building Materials and Steps into One Process," Advanced Materials, vol. 27, pp. 7854-7860, 2015.
[36] H. Pan, J. Li, and Y. Feng, "Carbon Nanotubes for Supercapacitor," Nanoscale Research Letters, vol. 5, p. 654, 2010.
[37] R. Warren, F. Sammoura, F. Tounsi, M. Sanghadasa, and L. Lin, "Highly Active Ruthenium Oxide Coating via ALD and Electrochemical Activation in Supercapacitor Applications," Journal of Materials Chemistry A, vol. 3, pp. 15568-15575, 2015.
[38] Q. Cheng, J. Tang, N. Shinya, and L.-C. Qin, "Co(OH)2 Nanosheet-decorated Graphene–CNT Composite for Supercapacitors of High Energy Density," Science and Technology of Advanced Materials, 2016.
[39] C. Guo, H. Li, X. Zhang, H. Huo, and C. Xu, "3D Porous CNT/MnO2 Composite Electrode for High-performance Enzymeless Glucose Detection and Supercapacitor Application," Sensors and Actuators B: Chemical, vol. 206, pp. 407-414, 2015.
[40] Y. Chen, L. Du, P. Yang, P. Sun, X. Yu, and W. Mai, "Significantly Enhanced Robustness and Electrochemical Performance of Flexible Carbon Nanotube-based Supercapacitors by Electrodepositing Polypyrrole," Journal of Power Sources, vol. 287, pp. 68-74, 2015.
[41] S. Zeng, H. Chen, F. Cai, Y. Kang, M. Chen, and Q. Li, "Electrochemical Fabrication of Carbon Nanotube/polyaniline Hydrogel Film for All-solid-state Flexible Supercapacitor with High Areal Capacitance," Journal of Materials Chemistry A, vol. 3, pp. 23864-23870, 2015.
[42] C. Meng, C. Liu, L. Chen, C. Hu, and S. Fan, "Highly Flexible and All-solid-state Paperlike Polymer Supercapacitors," Nano Letters, vol. 10, pp. 4025-4031, 2010.
[43] S. Devaraj and N. Munichandraiah, "Effect of Crystallographic Structure of MnO2 on its Electrochemical Capacitance Properties," The Journal of Physical Chemistry C, vol. 112, pp. 4406-4417, 2008.
[44] A. Sarkar, A. Kumar Satpati, V. Kumar, and S. Kumar, "Sol-gel Synthesis of Manganese Oxide Films and their Predominant Electrochemical Properties," Electrochimica Acta, vol. 167, pp. 126-131, 2015.
[45] R. N. Reddy and R. G. Reddy, "Sol–gel MnO2 as an Electrode Material for Electrochemical Capacitors," Journal of Power Sources, vol. 124, pp. 330-337, 2003.
[46] G. Zhang, F. Ding, L. Sang, G. Wang, M. Feng, Z. Ma, et al., "Two-dimensional Cobalt–manganese Binary Metal Oxide Porous Nanosheets for High-performance Supercapacitors," Journal of Solid State Electrochemistry, pp. 1-8, 2016.
[47] Y. Chen, W. Qin, R. Fan, J. Wang, and B. Chen, "Hydrothermal Synthesis and Electrochemical Properties of Spherical α-MnO2 for Supercapacitors," Journal of Nanoscience and Nanotechnology, vol. 15, pp. 9760-9765, 2015.
[48] Y.-C. Tsai, W.-D. Yang, K.-C. Lee, and C.-M. Huang, "An Effective Electrodeposition Mode for Porous MnO2/Ni Foam Composite for Asymmetric Supercapacitors," Materials, vol. 9, pp. 246-259, 2016.
[49] T. Shinomiya, V. Gupta, and N. Miura, "Effects of Electrochemical-deposition Method and Microstructure on the Capacitive Characteristics of Nano-sized Manganese Oxide," Electrochimica Acta, vol. 51, pp. 4412-4419, 2006.
[50] 汪建民, "材料分析," 中國材料科學學會,新竹,台灣, pp. 659-672.
[51] A. C. Ferrari, "Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–phonon Coupling, Doping and Nonadiabatic Effects," Solid State Communications, vol. 143, pp. 47-57, 2007.
[52] S.-B. Ma, Y.-H. Lee, K.-Y. Ahn, C.-M. Kim, K.-H. Oh, and K.-B. Kim, "Spontaneously Deposited Manganese Oxide on Acetylene Black in an Aqueous Potassium Permanganate Solution," Journal of The Electrochemical Society, vol. 153, pp. C27-C32, 2006.
[53] H. Nesbitt and D. Banerjee, "Interpretation of XPS Mn (2p) Spectra of Mn Oxyhydroxides and Constraints on the Mechanism of MnO2 Precipitation," American Mineralogist, vol. 83, pp. 305-315, 1998.
[54] C.-C. Hu and C.-C. Wang, "Nanostructures and Capacitive Characteristics of Hydrous Manganese Oxide Prepared by Electrochemical Deposition," Journal of the Electrochemical Society, vol. 150, pp. A1079-A1084, 2003.
[55] J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, et al., "Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes," Energy & Environmental Science, vol. 4, pp. 3573-3583, 2011.