簡易檢索 / 詳目顯示

研究生: 彭曉彤
Peng Xiaotong
論文名稱: 垂直奈米碳管/二氧化錳複合電極材料的製備及其於超級電容上之電化學性能探討
Synthesis of Arrayed CNT/MnO2 Composite Electrode and its Electrochemical Performance for Supercapacitor.
指導教授: 戴念華
Nyan-Hwa Tai
口試委員: 郭文雄
Wen-Hsiung Kuo
林建宏
Chien-Hung Lin
李紫原
Chi-Young Lee
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 83
中文關鍵詞: 奈米碳管超級電容二氧化麼
外文關鍵詞: Carbon nanotube, Supercapacitor, Manganese dioxide
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用快速升降溫化學氣相沉積法製備出垂直的奈米碳管,並以電化學沉積法於奈米碳管上沉積二氧化錳,製備出垂直奈米碳管/二氧化錳複合材料。本研究探討了CNT長度、MnO2於CNT/MnO2中含量以及用以成長CNT之模板型Si基板等因素對CNT/MnO2複合電極材料電容特性的影響。
    通過控制奈米碳管的成長時間來控制其長度,得到不同長度的CNT/MnO2複合物,本研究探討的長度分別為20 μm以及250 μm的CNT,發現長度較長的CNT因為導電性更佳而擁有更加高的比電容值。另外,通過控制沉積MnO2的時間來控制CNT/MnO2中MnO2的含量,發現隨著MnO2含量的增加,電極的比電容值呈現先上升後下降的趨勢。對比沉積MnO2之後不同長度的CNT/MnO2,發現長度較短的CNT/MnO2擁有更高的比電容值,其中short-CNT/MnO2(240 s)的電容值達到148 F/g,比long- CNT/MnO2 (160 s)的69 F/g高出許多。為了增加CNT與電解液的接觸面積,本研究使用黃光顯影製程以及反應性離子蝕刻製備模板型Si基板,並用上述方法製備patterned-CNT/MnO2複合電極。通過電化學分析發現,單一patterned-CNT比電容值比long-CNT以及short-CNT都高,這表明增加電極材料與電解液的接觸面積,能夠有效的提升其比電容值,而且patterned-CNT/MnO2 (80 s)的比電容值達到168 F/g。


    This study successfully synthesized aligned carbon nanotube/ manganese dioxide (CNT/MnO2) composite material by rapid heating and cooling chemical vapor deposition followed by electrochemical deposition. Different lengths of CNT/MnO2 composites can be easily obtained by controlling CNT growth durations. The longer CNTs with a length of 250 μm show higher specific capacitance because they possessed higher conductivity as compared with shorter CNTs with a length of 20 μm. The content of MnO2 in the composite, simply controlled by electrochemical deposition time, affected the morphology, microstructure and the capacitive behavior of CNT/MnO2. It is found that the specific capacitance increased with MnO2 amount and decreased when longer MnO2 deposition time was used. Compared with the longer CNT/MnO2, the shorter one exhibits better capacitive behavior; the specific capacitance of short-CNT/MnO2 (240 s) reached 148 F/g which is much higher than 69 F/g of long-CNT/MnO2 (160 s). In order to increase the contact area between CNT and the electrolyte, this study prepared patterned Si substrate using photolithography and reactive ion etching and synthesized patterned-CNT/MnO2. Higher specific capacitance of patterned-CNT/MnO2 was obtained indicating that increasing the contact area could effectively improve the capacitive performance of the electrode; in addition, the patterned-CNT/MnO2 (80 s) demonstrates a high specific capacitance of 168 F/g.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1.1前言 1 1.2研究動機 1 第二章 文獻回顧 3 2.1超級電容 3 2.1.1超級電容簡介 3 2.1.2超級電容器原理及分類 4 2.1.3電極材料 7 2.1.4超級電容性能測試原理及方法 10 2.2奈米碳管 13 2.2.1奈米碳管之結構與性質 13 2.2.2奈米碳管主要製程 15 2.2.3奈米碳管之成長機制 18 2.2.4奈米碳管於超級電容之應用 18 2.3二氧化錳 20 2.3.1二氧化錳之結構特點 20 2.3.2二氧化錳之製備方法 21 2.3.3二氧化錳於超級電容中之反應機制 23 第三章 研究方法與實驗步驟 39 3.1研究方法與目的 39 3.2實驗步驟 39 3.2.1 Si基板準備 39 3.2.2 催化劑薄膜製備 40 3.2.3 垂直奈米碳管製備 41 3.2.4垂直奈米碳管之親水性處理 41 3.2.5垂直奈米碳管/二氧化錳複合電極製備 42 3.2.6垂直奈米碳管/二氧化錳複合電極化學結構、表面形貌分析 42 3.2.7垂直奈米碳管/二氧化錳複合電極電化學分析 42 3.3製程及分析儀器 43 3.3.1磁控濺渡系統 43 3.3.2快速升降溫化學氣相沉積 44 3.3.3拉曼光譜儀 44 3.3.4化學分析電子能譜儀 45 3.3.5掃描式電子顯微鏡 45 3.3.6 恒電位/電流電化學分析儀 46 第四章 結果與討論 50 4.1垂直奈米碳管/二氧化錳複合物之結構分析 50 4.1.1垂直奈米碳管/二氧化錳複合物之拉曼圖譜分析 50 4.1.2垂直奈米碳管/二氧化錳複合物之ESCA圖譜分析 51 4.1.3垂直奈米碳管/二氧化錳複合物之形貌分析 52 4.2垂直奈米碳管/二氧化錳複合物之電化學性能分析 55 4.2.1垂直奈米碳管/二氧化錳複合物之循環伏安分析 55 4.2.2垂直奈米碳管/二氧化錳複合物之計時電位分析 59 第五章 結論 76 参考文献 78

    [1] J. R. Miller and P. Simon, "Electrochemical Capacitors for Energy Management," Science, vol. 321, pp. 651-652, 2008.
    [2] T. Christen and M. W. Carlen, "Theory of Ragone Plots," Journal of Power Sources, vol. 91, pp. 210-216, 2000.
    [3] A. G. Pandolfo and A. F. Hollenkamp, "Carbon Properties and their Role in Supercapacitors," Journal of Power Sources, vol. 157, pp. 11-27, 2006.
    [4] H. v. Helmholtz, "Ueber Einige Gesetze der Vertheilung Elektrischer Ströme in körperlichen Leitern mit Anwendung auf die Thierisch‐elektrischen Versuche," Annalen der Physik, vol. 165, pp. 211-233, 1853.
    [5] A. M. Namisnyk, "A Survey ofElectrochemical Supercapacitor Technology," University of Technology, Sydney, 2003.
    [6] O. Stern, "The Theory of the Electrolytic Double-layer," Z. Elektrochem, vol. 30, pp. 1014-1020, 1924.
    [7] D. C. Grahame, "The Electrical Double Layer and the Theory of Electrocapillarity," Chemical reviews, vol. 41, pp. 441-501, 1947.
    [8] H. Wang and L. Pilon, "Accurate Simulations of Electric Double Layer Capacitance of Ultramicroelectrodes," The Journal of Physical Chemistry C, vol. 115, pp. 16711-16719, 2011.
    [9] S. P. Naoi. Katsuhiko, "New Materials and New Configurations for Advanced Electrochemical Capacitors," Journal of The Electrochemical Society vol. 17, pp. 34-37, 2008.
    [10] Z.-z. Zhu, G.-c. Wang, M.-q. Sun, X.-w. Li, and C.-z. Li, "Fabrication and Electrochemical Characterization of Polyaniline Nanorods Modified with Sulfonated Carbon Nanotubes for Supercapacitor Applications," Electrochimica Acta, vol. 56, pp. 1366-1372, 2011.
    [11] E. Frackowiak and F. Béguin, "Carbon Materials for the Electrochemical Storage of Energy in Capacitors," Carbon, vol. 39, pp. 937-950, 2001.
    [12] K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, M. Reda, J. Parmentier, et al., "Capacitance Properties of Ordered Porous Carbon Materials Prepared by a Templating Procedure," Journal of Physics and Chemistry of Solids, vol. 65, pp. 287-293, 2004.
    [13] Z. G. Cambaz, G. N. Yushin, Y. Gogotsi, K. L. Vyshnyakova, and L. N. Pereselentseva, "Formation of Carbide-Derived Carbon on β-Silicon Carbide Whiskers," Journal of the American Ceramic Society, vol. 89, pp. 509-514, 2006.
    [14] TalapatraS, KarS, S. K. Pal, VajtaiR, CiL, VictorP, et al., "Direct Growth of Aligned Carbon Nanotubes on Bulk Metals," Nat Nano, vol. 1, pp. 112-116, 2006.
    [15] E. Frackowiak, S. Delpeux, K. Jurewicz, K. Szostak, D. Cazorla-Amoros, and F. Béguin, "Enhanced Capacitance of Carbon Nanotubes through Chemical Activation," Chemical Physics Letters, vol. 361, pp. 35-41, 2002.
    [16] A. K. Geim and K. S. Novoselov, "The Rise of Graphene," Nat Mater, vol. 6, pp. 183-191, 2007.
    [17] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, et al., "Supercapacitor Devices Based on Graphene Materials," The Journal of Physical Chemistry C, vol. 113, pp. 13103-13107, 2009.
    [18] N. Li, S. Tang, Y. Dai, and X. Meng, "The Synthesis of Graphene Oxide Nanostructures for Supercapacitors: a Simple Route," Journal of Materials Science, vol. 49, pp. 2802-2809, 2014.
    [19] Y. Cai, Y. Wang, S. Deng, G. Chen, Q. Li, B. Han, et al., "Graphene Nanosheets-tungsten Oxides Composite for Supercapacitor Electrode," Ceramics International, vol. 40, pp. 4109-4116, 2014.
    [20] H. Lee, M. S. Cho, I. H. Kim, J. D. Nam, and Y. Lee, "RuOx/polypyrrole Nanocomposite Electrode for Electrochemical Capacitors," Synthetic Metals, vol. 160, pp. 1055-1059, 2010.
    [21] M. Toupin, T. Brousse, and D. Bélanger, "Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor," Chemistry of Materials, vol. 16, pp. 3184-3190, 2004.
    [22] K. L. Levine, "Synthesis, Characterization and Properties of Polypyrrole/polyimides Composites," University of Cincinnati, 2002.
    [23] K. Chen and D. Xue, "Water-soluble Inorganic Salt with Ultrahigh Specific Capacitance: Ce(NO3)3 can be Designed as Excellent Pseudocapacitor Electrode," Journal of Colloid and Interface Science, vol. 416, pp. 172-176, 2014.
    [24] A. J. Bard, L. R. Faulkner, J. Leddy, and C. G. Zoski, Electrochemical Methods: Fundamentals and Applications vol. 2: Wiley New York, 1980.
    [25] M. S. Dresselhaus, G. Dresselhaus, and R. Saito, "Nanotubes Physics of Carbon Nanotubes," Carbon, vol. 33, pp. 883-891, 1995.
    [26] P. L. McEuen, M. S. Fuhrer, and H. Park, "Single-walled Carbon Nanotube Electronics," IEEE Transactions on Nanotechnology, vol. 1, pp. 78-85, 2002.
    [27] T. W. Odom, J.-L. Huang, P. Kim, and C. M. Lieber, "Atomic Structure and Electronic Properties of Single-walled Carbon Nanotubes," Nature, vol. 391, pp. 62-64, 1998.
    [28] A. Szabó, C. Perri, A. Csató, G. Giordano, D. Vuono, and J. B. Nagy, "Synthesis Methods of Carbon Nanotubes and Related Materials," Materials, vol. 3, pp. 3092-3140, 2010.
    [29] C.-C. Chiu, T.-Y. Tsai, N.-H. Tai, and C.-Y. Lee, "Synthesis of Ultra Long Vertically Aligned Carbon Nanotubes Using the Rapid Heating and Cooling System in the Thermal Chemical Vapor Deposition Process," Surface and Coatings Technology, vol. 200, pp. 3215-3219, 2006.
    [30] M. Kumar and Y. Ando, Carbon Nanotube Synthesis and Growth Mechanism: INTECH Open Access Publisher, 2011.
    [31] H. Zhang, G. Cao, Y. Yang, and Z. Gu, "Comparison Between Electrochemical Properties of Aligned Carbon Nanotube Array and Entangled Carbon Nanotube Electrodes," Journal of the Electrochemical Society, vol. 155, pp. K19-K22, 2008.
    [32] M. Saghafi, F. Mahboubi, S. Mohajerzadeh, and R. Holze, "Preparation of Vertically Aligned Carbon Nanotubes and their Electrochemical Performance in Supercapacitors," Synthetic Metals, vol. 195, pp. 252-259, 2014.
    [33] K. H. An, W. S. Kim, Y. S. Park, H. J. Jeong, Y. C. Choi, J.-M. Moon, et al., "Supercapacitors Using Singlewalled Carbon Nanotube Electrodes," in NANONETWORK MATERIALS: Fullerenes, Nanotubes, and Related Systems, 2001, pp. 241-244.
    [34] X. Zhao, B. T. Chu, B. Ballesteros, W. Wang, C. Johnston, J. M. Sykes, et al., "Spray Deposition of Steam Treated and Functionalized Single-walled and Multi-walled Carbon Nanotube Films for Supercapacitors," Nanotechnology, vol. 20, pp. 065605-065611, 2009.
    [35] B. Wang, X. Fang, H. Sun, S. He, J. Ren, Y. Zhang, et al., "Fabricating Continuous Supercapacitor Fibers with High Performances by Integrating All Building Materials and Steps into One Process," Advanced Materials, vol. 27, pp. 7854-7860, 2015.
    [36] H. Pan, J. Li, and Y. Feng, "Carbon Nanotubes for Supercapacitor," Nanoscale Research Letters, vol. 5, p. 654, 2010.
    [37] R. Warren, F. Sammoura, F. Tounsi, M. Sanghadasa, and L. Lin, "Highly Active Ruthenium Oxide Coating via ALD and Electrochemical Activation in Supercapacitor Applications," Journal of Materials Chemistry A, vol. 3, pp. 15568-15575, 2015.
    [38] Q. Cheng, J. Tang, N. Shinya, and L.-C. Qin, "Co(OH)2 Nanosheet-decorated Graphene–CNT Composite for Supercapacitors of High Energy Density," Science and Technology of Advanced Materials, 2016.
    [39] C. Guo, H. Li, X. Zhang, H. Huo, and C. Xu, "3D Porous CNT/MnO2 Composite Electrode for High-performance Enzymeless Glucose Detection and Supercapacitor Application," Sensors and Actuators B: Chemical, vol. 206, pp. 407-414, 2015.
    [40] Y. Chen, L. Du, P. Yang, P. Sun, X. Yu, and W. Mai, "Significantly Enhanced Robustness and Electrochemical Performance of Flexible Carbon Nanotube-based Supercapacitors by Electrodepositing Polypyrrole," Journal of Power Sources, vol. 287, pp. 68-74, 2015.
    [41] S. Zeng, H. Chen, F. Cai, Y. Kang, M. Chen, and Q. Li, "Electrochemical Fabrication of Carbon Nanotube/polyaniline Hydrogel Film for All-solid-state Flexible Supercapacitor with High Areal Capacitance," Journal of Materials Chemistry A, vol. 3, pp. 23864-23870, 2015.
    [42] C. Meng, C. Liu, L. Chen, C. Hu, and S. Fan, "Highly Flexible and All-solid-state Paperlike Polymer Supercapacitors," Nano Letters, vol. 10, pp. 4025-4031, 2010.
    [43] S. Devaraj and N. Munichandraiah, "Effect of Crystallographic Structure of MnO2 on its Electrochemical Capacitance Properties," The Journal of Physical Chemistry C, vol. 112, pp. 4406-4417, 2008.
    [44] A. Sarkar, A. Kumar Satpati, V. Kumar, and S. Kumar, "Sol-gel Synthesis of Manganese Oxide Films and their Predominant Electrochemical Properties," Electrochimica Acta, vol. 167, pp. 126-131, 2015.
    [45] R. N. Reddy and R. G. Reddy, "Sol–gel MnO2 as an Electrode Material for Electrochemical Capacitors," Journal of Power Sources, vol. 124, pp. 330-337, 2003.
    [46] G. Zhang, F. Ding, L. Sang, G. Wang, M. Feng, Z. Ma, et al., "Two-dimensional Cobalt–manganese Binary Metal Oxide Porous Nanosheets for High-performance Supercapacitors," Journal of Solid State Electrochemistry, pp. 1-8, 2016.
    [47] Y. Chen, W. Qin, R. Fan, J. Wang, and B. Chen, "Hydrothermal Synthesis and Electrochemical Properties of Spherical α-MnO2 for Supercapacitors," Journal of Nanoscience and Nanotechnology, vol. 15, pp. 9760-9765, 2015.
    [48] Y.-C. Tsai, W.-D. Yang, K.-C. Lee, and C.-M. Huang, "An Effective Electrodeposition Mode for Porous MnO2/Ni Foam Composite for Asymmetric Supercapacitors," Materials, vol. 9, pp. 246-259, 2016.
    [49] T. Shinomiya, V. Gupta, and N. Miura, "Effects of Electrochemical-deposition Method and Microstructure on the Capacitive Characteristics of Nano-sized Manganese Oxide," Electrochimica Acta, vol. 51, pp. 4412-4419, 2006.
    [50] 汪建民, "材料分析," 中國材料科學學會,新竹,台灣, pp. 659-672.
    [51] A. C. Ferrari, "Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–phonon Coupling, Doping and Nonadiabatic Effects," Solid State Communications, vol. 143, pp. 47-57, 2007.
    [52] S.-B. Ma, Y.-H. Lee, K.-Y. Ahn, C.-M. Kim, K.-H. Oh, and K.-B. Kim, "Spontaneously Deposited Manganese Oxide on Acetylene Black in an Aqueous Potassium Permanganate Solution," Journal of The Electrochemical Society, vol. 153, pp. C27-C32, 2006.
    [53] H. Nesbitt and D. Banerjee, "Interpretation of XPS Mn (2p) Spectra of Mn Oxyhydroxides and Constraints on the Mechanism of MnO2 Precipitation," American Mineralogist, vol. 83, pp. 305-315, 1998.
    [54] C.-C. Hu and C.-C. Wang, "Nanostructures and Capacitive Characteristics of Hydrous Manganese Oxide Prepared by Electrochemical Deposition," Journal of the Electrochemical Society, vol. 150, pp. A1079-A1084, 2003.
    [55] J. R. McKone, E. L. Warren, M. J. Bierman, S. W. Boettcher, B. S. Brunschwig, N. S. Lewis, et al., "Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes," Energy & Environmental Science, vol. 4, pp. 3573-3583, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE