研究生: |
楊士賢 Yang, Hsien Shih |
---|---|
論文名稱: |
矽異質接面太陽能電池之研究 Study on Silicon Heterojunction Solar Cells |
指導教授: |
吳永俊
Wu, Yung-Chun |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 異質接面 、太陽能電池 、矽異質接面太陽能電池 、本質層 、離子佈植 |
外文關鍵詞: | HIT, heterojunction solar cell, photovoltaic, heteroemitter, ion implantation, silicon solar cell |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是研究異質接面太陽能電池的製程與光電特性,我們在單晶矽基板上用化學氣相沉積法同時沉積正反兩面本質非晶矽層(intrinsic amorphous silicon),接著在兩面非晶矽層分別用離子佈植法佈植形成P型與N型重摻雜層,如此可以很快速分別形成射極(emitter)與背表面場(back surface field)。非晶矽層可以改善單晶矽太陽能電池在短波長處的響應(<600nm)同時鈍化(passivate)單晶矽層表面可以大幅提升太陽能電池短路電流(Jsc)。
利用氟化硼(BF2)離子源佈植硼離子時,同時也佈植氟離子。根據文獻,此氟離子可以降低非晶矽的缺陷狀態密度(traps density of state)。完成金屬電極後之太陽能電池經過氫燒結後(H2 sintering)可減低矽表面的懸浮鍵(dangling bonds),同時也可以使得金屬與矽表面有更好的接觸。我們發現離子佈植劑量與太陽能電池效率有很大的相依性,提升離子佈植劑量同時也會使得太陽能電池的效率提升。而非晶矽當射極會有因為導電率差而產生橫向載子傳輸不好的問題,對此我們在射極上方加一層銦錫氧化物(ITO)來改善之,800埃(A)的銦錫氧化物也同時具有對600nm附近波長的太陽光有抗反射效果應此也可提升短路電流。
從異質接面太陽能電池的研究可以學到許多提升太陽能效率的方法,提升太陽能電池轉換效率就能大大降低元件成本,使之更具商業競爭力,未來若能使用更薄的矽基板,更低溫更簡單的製程,生產更高效率的太陽能電池,想必能降低人類對石化能源的依賴。
This paper is studying the fabrication and characterization of heterojunction solar cell, we deposited intrinsic amorphous silicon on single crystal silicon substrate and P-type and N-type layer was formed by ion implantation methods, can be formed emitter and the back surface field quickly. Amorphous silicon single-crystal silicon solar cells can improve the response in the short wavelength (<600nm) of light and amorphous passivate surface of single crystal silicon layer can enhance short circuit current (Jsc) of the solar cell significantly.
Implantation of boron ions also implanted fluoride at the same time by BF2 ion source, density of state can be reduced by fluoride ion in amorphous silicon ,and the solar cell anneal in the hydrogen environment after metal electrodes deposition, silicon binding with hydrogen can reduce dangling bonds in silicon surface substantially as well as annealing in the hydrogen environment can make the contact well on metal and silicon surface. We also introduced the manufacturing process of SiC, band gap of SiC is more than 2eV, SiC could make the emitter and the silicon substrate with greater potential energy, the greater of the electric field to accelerate the of electron and hole by light illuminate and separate them quickly. The amorphous silicon as the emitter with a problem of poor conductivity to transverse carrier transport, which we add a layer above the emitter indium tin oxide (ITO) to improvement. 800 A of ITO also has anti-reflective effect near the wavelength of 600nm, so ITO can enhance the short-circuit current(Jsc) of solar cells.
We can learn a lot of ways to enhance the efficiency of solar energy from studying the heterojunction solar cells. Enhance the conversion efficiency of solar cells could greatly reduce the cell cost, if we manufacture solar cell with thinner silicon substrate, simpler and low temperature process ,and to produce more high-efficiency solar cells, solar cell will be able to reduce our
Chapter 1
[1-1]. A. Fahrenbruch, Fundamental of Solar Cells, P9.
[1-2]. Jenny Nelson,The Physic of Solar Cells, P2.
[1-3]. CARLSON DE, WRONSKI CR,’’ AMORPHOUS SILICON SOLAR-CELL’’, APPLIED PHYSICS LETTERS,Vol.: 28,Issue: 11,P.671-673,1976
[1-4]. D.M. Chapin, C.S. Fuller and G.L. Pearson, "A New Junction Photocell for Converting Solar Radiation into Power", J. Awl. Phys., 25, P.676-677 ,1954.
[1-5]. K. Wakiasaka, IEEE,”More than 16% solar cells with a new HIT (doped a-Si_non-doped a-Si_crystalline Si) structure”, 1991.
[1-6] Stefaan De Wolf and Michio Kondo , APPLIED PHYSICS LETTERS ,”Boron-doped a-Si H c-Si interface passivation, Degradation mechanism”, Vol:91 ,P 91-93,2007.
[1-7] Mikio Taguchi, PROGRESS IN PHOTOVOLTAICS] RESEARCH AND APPLICATIONS, “HIT cells - high-efficiency crystalline Si cells with novel structure”, Issu:8, P492-402, 2000.
[1-8] Mikio Taguchi, PROGRESS IN PHOTOVOLTAICS] RESEARCH AND APPLICATIONS, “HIT cells - high-efficiency crystalline Si cells with novel structure”, Issu:8, P492-402, 2000.
[1-9] Mikio Taguchi, PROGRESS IN PHOTOVOLTAICS] RESEARCH AND APPLICATIONS, “HIT cells - high-efficiency crystalline Si cells with novel structure”, Issu:8, P492-402, 2000.
Chapter 2
[2-1] A.L.Fahrenbruch and R.H.Bube, Fundamentals of Solar Cells,Academic press, New York, P48, 1983.
[2-2] Martin A.Green, Solar Cells: Operating principles, technology and system applications, University of New South Wales, Kensington, NSW, P44, 1986.
[2-3] Martin A.Green, Solar Cells: Operating principles, technology and systemapplications, University of New South Wales, Kensington, NSW, 1986, P47.
[2-4] S.M.Sze, Physics of Semiconductor Devices ,New York: Wiley,P56, 1969.
[2-5] A.L.Fahrenbruch and R.H.Bube, Fundamentals of Solar Cells, Academic press, New York, P47, 1983.
[2-6] Martin A.Green, Solar Cells: Operating principles, technology and system applications, University of New South Wales, Kensington, NSW, 1986, P32.
[2-7] Donald A. Neamen, Semiconductor Physics & Devices, Mc Graw Hill,P276,2006.
[2-8] Martin A.Green, Solar Cells: Operating principles, technology and system applications, University of New South Wales, Kensington, NSW, P65, 1986.
[2-9] A.S.Grove, Physics and Technology of Semiconductor Devices, New York, Wiley, P158, 1967.
Chapter 4
[3-1] R.Stangl, A.Froitzheim, M.Kriegel etc. “AFORS-HET, A Numerical PC-Program for Simulation of Heterojunction Solar Cells, Version 1.1”, Proc. 19th PVSEC 2004
[3-2] Stangl, Froitzheim, Schmidt, Fuhs, Proc. WCPEC-3, World Conf. PV En. Conv.,Osaka, Japan, 2003, 4P-A8-45
[3-3] Stangl, Kriegel, Schmidt, Proc. EPVSEC-20, Version 2.0 of AFORS-HET,
Barcelona, Spain, June 2005
[3-4]R.Stangl, M.Kriegel and M.Schmidt, “AFORS-HET, Version 2.2, A Numerical
Computer Program for Simulation of Heterojunction Solar Cells and Measurements”, Proc. WCPEC-4, World Conf. PV En. Conv., 2006
[3-5] L. Zhao*, C. L. Zhou, H. L. Li, H. W. Diao, and W. J. Wang, phys. stat. sol, “Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation”,2008
[3-5] L. Zhao *, H.L. Li, C.L. Zhou, H.W. Diao, W.J. Wang, Solar Energy,”Optimized resistivity of p-type Si substrate for HIT solar cell with Al”,2009.
Chapter 4
[4-1] J. Lindmayer and J.F. Allison Conference Record, 9th IEEE Photovoltaic Specialists Conference,” "An Improved Silicon Solar Cell-The Violet Cell," “,Silver Spring, Md. , p.83, 1972.
[4-2] IRMSCHER K, KLOSE H, MAASS K, JOURNAL OF PHYSICS C-SOLID STATE PHYSICS,“HYDROGEN-RELATED DEEP LEVELS IN PROTON-BOMBARDED SILICON”, Vol: 17,Issue: 35,1984.
[4-3] Th. Wolkenstein, Physico-chimie de la Surface des Semiconducteurs, MIR editions, Moscow, 1973.
[4-4] MARTINUZZI S, SEBBAR MA, GERVAIS J, APPLIED PHYSICS LETTERS , “COMPENSATION OF P-TYPE CAST POLYCRYSTALLINE SILICON BY HYDROGEN-ION IMPLANTATION AT 300-DEGREES-C”,1985.
[4-5]L. Zhao, Physica Status Solidi, “Role of the work function of transparent conductive oxide on the performance of amorphous/crystalline silicon heterojunction solar cells studied by computer simulation” , 205, No. 5, P.1215–1221,2008.