研究生: |
王芳瑜 Wang, Fang yu |
---|---|
論文名稱: |
綠膿桿菌 B136-33 之LasA, LasB,與 PrpL 蛋白酶對胞外分泌蛋白質之調節與細菌生理之影響 Modulation of Pseudomonas aeruginosa B136-33 secretome and the bacterial physiology by LasA, LasB and PrpL proteases |
指導教授: |
張晃猷
Chang, Hwan You |
口試委員: |
高茂傑
Kao, Mou Chieh 張壯榮 Chang, Chuang Rung |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 60 |
中文關鍵詞: | 綠膿桿菌 、外分泌蛋白質 、蛋白酶 |
外文關鍵詞: | Pseudoomonas aeruginosa, Secretome, Proteases |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
綠膿桿菌為一株伺機性感染之病原菌,藉由肺部、傷口、尿道進行感染並造成全身性的菌血症。其能夠分泌許多蛋白酶,在感染過程中扮演重要的角色。其中,彈性蛋白酶 B (LasB) 為金屬蛋白酶,它能夠分解人體組織中的蛋白質,例如彈性蛋白和膠原蛋白;彈性蛋白酶 A (LasA) 為肽鏈內切酶,它能夠切割含有甘氨酸的蛋白質及彈性蛋白;蛋白酶 IV (PrpL) 為賴氨酸肽鏈內切酶,其會分解纖維蛋白原、纖維蛋白溶酶原以及一些與免疫防禦系統相關的蛋白質。這些蛋白酶已經被證實在綠膿桿菌感染初期扮演重要的角色,但它們之間的交互作用以及對其他外分泌蛋白的調節機制仍不清楚。在本研究中,我們分析突變株 ΔlasA、ΔlasB、ΔprpL以及野生型 B136-33 之外分泌蛋白體 (secretome),以了解 LasA、LasB 及 PrpL 對外分泌蛋白的調節。首先以聚丙烯醯胺膠體電泳解析細菌的外分泌蛋白質,再以基質輔助激光解吸電離飛行時間質譜 (MALDI-TOF MS) 和液相層析串聯質譜 (LC-MS/MS) 進行蛋白分析與鑑定。結果顯示,許多分泌性胜肽酶、外膜脂蛋白和A型鞭毛蛋白都會受到 LasA、LasB 及 PrpL其中一種的調節。此外,ΔlasB 突菌株之溶血能力、酪蛋白酶活性以及生物膜形成能力均降低,而綠膿素 (pyocyanin) 生成量增加。在 ΔlasA 和 ΔprpL 中,螢光鐵載體 (pyoverdine) 生成量皆降低。綠膿桿菌 B136-33、ΔlasA、ΔlasB 和 ΔprpL 之培養上清液皆能夠誘導巨噬細胞 RAW264.7 之 IL-1β、IFN-γ 以及 TNF-α產生;其中,以 ΔlasA 和 ΔprpL 之培養上清液刺激巨噬細胞時,其會產生較少的TNF-α。綜合以上結果,綠膿桿菌的 LasA、LasB 和 PrpL 不僅是重要的致病因子,同時也扮演調控的角色,對於其他毒力因子以及本身的調節是不可缺少的。本研究提供了分泌蛋白酶之間的相互作用及調節之重要資訊,以用於改善綠膿桿菌感染症的治療。
Pseudomonas aeruginosa is an opportunist pathogen that can cause lung infection, severe wound infection, urinary tract infections and bacteremia. It secretes several proteases that are play critical roles for infection. Elastase B (LasB) is a metalloprotease, which can degrade proteins from human tissues such as elastin and collagen. Elastase A (LasA) is a endopeptidase, which can cleave glycine-containing proteins and elastin. Protease IV (PrpL) is a lysyl endopeptidase that can digest fibrinogen, plasminogen and several proteins which belonging to immune defense system. These proteases have been demonstrated to play critical roles in initial infection of P. aeruginosa, but interactions between them and modulation of secretome by these proteases are not clear. In this study, we analyzed the secretome of ∆lasA, ∆lasB, ∆prpL, and wild type B136-33 and find out modulation of secretome by LasA, LasB, PrpL. The secreted proteins were resolved by SDS-PAGE, and subsequently identified using MALDI-TOF MS and LC-MS/MS. The result showed that a number of secreted peptidases, outer membrane lipoproteins and A-type flagellin were modulated by one of three proteases. In addition, the hemolysis activity, caseinase activity and biofilm formation were decreased, while pyocyanin production was increased in the ∆lasB strain. Pyoverdine production was decreased in both ∆lasA and ∆prpL strains. P. aeruginosa wild type B136-33 and ∆lasA, ∆lasB and ∆prpL were able to induce cytokines IL-1β, IFN-γ and TNF-α production from macrophages RAW 264.7. Among these cytokines, the production of TNF-α was decreased after macrophage was induced by ∆lasA and ∆prpL culture supernatant. Taken together, the study indicates that LasB and LasA and PrpL not only are the virulence factors of P. aeruginosa, but also are modulators, essential for processing other virulence components and their own selves. This study provides useful information for understanding the interactions among secreted proteases, and for improving the treatment of P. aeruginosa infection diseases.
1. Glasser, J.R. and R.K. Mallampalli, Surfactant and its role in the pathobiology of pulmonary infection. Microbes Infect, 2012. 14(1): p. 17-25.
2. Gokcen, A., A. Vilcinskas, and J. Wiesner, Biofilm-degrading enzymes from Lysobacter gummosus. Virulence, 2014. 5(3): p. 378-87.
3. Willcox, M.D., et al., Role of quorum sensing by Pseudomonas aeruginosa in microbial keratitis and cystic fibrosis. Microbiology, 2008. 154(Pt 8): p. 2184-94.
4. Kessler, E., et al., Elastase and the LasA protease of Pseudomonas aeruginosa are secreted with their propeptides. J Biol Chem, 1998. 273(46): p. 30225-31.
5. Armstrong, A.V., D.E. Stewart-Tull, and J.S. Roberts, Characterisation of the Pseudomonas aeruginosa factor that inhibits mouse-liver mitochondrial respiration. J Med Microbiol, 1971. 4(2): p. 249-62.
6. Drake, D. and T.C. Montie, Flagella, motility and invasive virulence of Pseudomonas aeruginosa. J Gen Microbiol, 1988. 134(1): p. 43-52.
7. Murray, T.S., M. Ledizet, and B.I. Kazmierczak, Swarming motility, secretion of type 3 effectors and biofilm formation phenotypes exhibited within a large cohort of Pseudomonas aeruginosa clinical isolates. J Med Microbiol, 2010. 59(Pt 5): p. 511-20.
8. Haiko, J. and B. Westerlund-Wikstrom, The role of the bacterial flagellum in adhesion and virulence. Biology (Basel), 2013. 2(4): p. 1242-67.
9. Chiang, P. and L.L. Burrows, Biofilm formation by hyperpiliated mutants of Pseudomonas aeruginosa. J Bacteriol, 2003. 185(7): p. 2374-8.
10. Burrows, L.L., Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol, 2012. 66: p. 493-520.
11. Rasamiravaka, T. and Q. Labtani, The formation of biofilms by Pseudomonas aeruginosa: a review of the natural and synthetic compounds interfering with control mechanisms. 2015. 2015: p. 759348.
12. Cole, S.J., et al., Catheter-associated urinary tract infection by Pseudomonas aeruginosa is mediated by exopolysaccharide-independent biofilms. Infect Immun, 2014. 82(5): p. 2048-58.
13. Yan Zhou, F.H., Li Li, Cong Zhao Protocol of SDS-PAGE for Proteomic Analysis of Bt Parasporal Crystals. Bioscience methods, 2013. Vol.4,(No. 1).
14. Berka, R.M. and M.L. Vasil, Phospholipase C (heat-labile hemolysin) of Pseudomonas aeruginosa: purification and preliminary characterization. J Bacteriol, 1982. 152(1): p. 239-45.
15. Berka, R.M., G.L. Gray, and M.L. Vasil, Studies of phospholipase C (heat-labile hemolysin) in Pseudomonas aeruginosa. Infect Immun, 1981. 34(3): p. 1071-4.
16. Pritchard, A.E. and M.L. Vasil, Nucleotide sequence and expression of a phosphate-regulated gene encoding a secreted hemolysin of Pseudomonas aeruginosa. J Bacteriol, 1986. 167(1): p. 291-8.
17. Arora, S.K., et al., Role of motility and flagellin glycosylation in the pathogenesis of Pseudomonas aeruginosa burn wound infections. Infect Immun, 2005. 73(7): p. 4395-8.
18. Davey, M.E. and A. O'Toole G, Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev, 2000. 64(4): p. 847-67.
19. Bogino, P.C., et al., The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci, 2013. 14(8): p. 15838-59.
20. Sadikot, R.T., et al., Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med, 2005. 171(11): p. 1209-23.
21. Kuang, Z., et al., Pseudomonas aeruginosa elastase provides an escape from phagocytosis by degrading the pulmonary surfactant protein-A. PLoS One, 2011. 6(11): p. e27091.
22. Veloorvalappil N. Jisha, R.B.S., Selvanesan Pradeep, Sasidharan Sreedevi, Kizhakkepawothail N. Unni, Sreedharan Sajith, Prakasan Priji, Moolakkariyil Sarath Josh, Sailas Benjamin, Versatility of microbial proteases. Advances in Enzyme Research, 2013. vol.1 No.3 (2013),(36957): p. 13 pages.
23. Ashbaugh, C.D. and M.R. Wessels, Absence of a cysteine protease effect on bacterial virulence in two murine models of human invasive group A streptococcal infection. Infect Immun, 2001. 69(11): p. 6683-8.
24. Van Delden, C. and B.H. Iglewski, Cell-to-cell signaling and Pseudomonas aeruginosa infections. Emerg Infect Dis, 1998. 4(4): p. 551-60.
25. Webster, J. and D. Oxley, Protein identification by MALDI-TOF mass spectrometry. Methods Mol Biol, 2012. 800: p. 227-40.
26. Cahan, R., et al., A secreted aminopeptidase of Pseudomonas aeruginosa. Identification, primary structure, and relationship to other aminopeptidases. J Biol Chem, 2001. 276(47): p. 43645-52.
27. Braum. O., d.G.A., Bitter, W., and Tommassen , J.,, Secretion of elastinolytic enzymes and their propertides by Pseudomonas aeruginosa. 1998: J. Bacterio.,. 180: 3467-3469.
28. Spungin, A., and Blumberg, S. Vol. 183. 1989: Eur. J. Biochem. 471-477.
29. Prescott, J.M., and Wilkes, S. H. Vol. 45. 1976: Methods Enzymol. 530-543.
30. Kanayama, N., Kajiwara, Y., Goto, J., el Maradny, E., Machara, K., Andou, K., and Terao,T., , Inactivation of interleukin-8 by aminopeptidase N(CD13). I. Leukoc Biol . , 1995. 57: p. 129-134.
31. Wu, Y.T., et al., A thermo-stable lysine aminopeptidase from Pseudomonas aeruginosa: Isolation, purification, characterization, and sequence analysis. J Basic Microbiol, 2014. 54(10): p. 1110-9.
32. Folders, J., et al., Identification of a chitin-binding protein secreted by Pseudomonas aeruginosa. J Bacteriol, 2000. 182(5): p. 1257-63.
33. Park, S. and D.R. Galloway, Purification and characterization of LasD: a second staphylolytic proteinase produced by Pseudomonas aeruginosa. Mol Microbiol, 1995. 16(2): p. 263-70.
34. Park, S. and D.R. Galloway, Pseudomonas aeruginosa LasD processes the inactive LasA precursor to the active protease form. Arch Biochem Biophys, 1998. 357(1): p. 8-12.
35. Pitt, J.J., Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev, 2009. 30(1): p. 19-34.
36. R. Hoge, A., Pelzer, F. Rosenau, S. Wilhelm, Weapons of a pathogen: Proteases and their role in virulence of Pseudomonas aeruginosa. Current research, Technology and Education Topic in Applied microbiology and Microbial Biotechnology, 2010.
37. Stehling, E.G., W.D. Silveira, and S. Leite Dda, Study of biological characteristics of Pseudomonas aeruginosa strains isolated from patients with cystic fibrosis and from patients with extra-pulmonary infections. Braz J Infect Dis, 2008. 12(1): p. 86-8.
38. Horvat, R.T., et al., Inactivation of human gamma interferon by Pseudomonas aeruginosa proteases: elastase augments the effects of alkaline protease despite the presence of alpha 2-macroglobulin. Infect Immun, 1989. 57(6): p. 1668-74.
39. Brown, M.R. and J.H. Foster, A simple diagnostic milk medium for Pseudomonas aeruginosa. J Clin Pathol, 1970. 23(2): p. 172-7.
40. Ostroff, R.M., A.I. Vasil, and M.L. Vasil, Molecular comparison of a nonhemolytic and a hemolytic phospholipase C from Pseudomonas aeruginosa. J Bacteriol, 1990. 172(10): p. 5915-23.
41. Terada, L.S., et al., Pseudomonas aeruginosa hemolytic phospholipase C suppresses neutrophil respiratory burst activity. Infect Immun, 1999. 67(5): p. 2371-6.
42. Barker, A.P., et al., A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. Mol Microbiol, 2004. 53(4): p. 1089-98.
43. Hollsing, A.E., et al., Prospective study of serum antibodies to Pseudomonas aeruginosa exoproteins in cystic fibrosis. J Clin Microbiol, 1987. 25(10): p. 1868-74.
44. Workentine, M.L., et al., Phenotypic heterogeneity of Pseudomonas aeruginosa populations in a cystic fibrosis patient. PLoS One, 2013. 8(4): p. e60225.
45. Delacourt, C., et al., Imbalance between 95 kDa type IV collagenase and tissue inhibitor of metalloproteinases in sputum of patients with cystic fibrosis. Am J Respir Crit Care Med, 1995. 152(2): p. 765-74.
46. de Kievit, T.R., Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol, 2009. 11(2): p. 279-88.
47. Rutherford, S.T. and B.L. Bassler, Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb Perspect Med, 2012. 2(11).
48. Williams, P., Quorum sensing, communication and cross-kingdom signalling in the bacterial world. Microbiology, 2007. 153(Pt 12): p. 3923-38.
49. Williams, P. and M. Camara, Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol, 2009. 12(2): p. 182-91.
50. Yu, H., et al., Elastase LasB of Pseudomonas aeruginosa promotes biofilm formation partly through rhamnolipid-mediated regulation. Can J Microbiol, 2014. 60(4): p. 227-35.
51. Ochsner, U.A., A. Fiechter, and J. Reiser, Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J Biol Chem, 1994. 269(31): p. 19787-95.
52. Deziel, E., et al., rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology, 2003. 149(Pt 8): p. 2005-13.
53. Franchi, L., et al., Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol, 2007. 37(11): p. 3030-9.
54. Kohler, T., et al., Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. J Bacteriol, 2000. 182(21): p. 5990-6.
55. Beatson, S.A., et al., Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa. J Bacteriol, 2002. 184(13): p. 3598-604.
56. Dietrich, L.E., et al., The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol, 2006. 61(5): p. 1308-21.
57. Visca, P., F. Imperi, and I.L. Lamont, Pyoverdine siderophores: from biogenesis to biosignificance. Trends Microbiol, 2007. 15(1): p. 22-30.
58. Allen, L., et al., Pyocyanin production by Pseudomonas aeruginosa induces neutrophil apoptosis and impairs neutrophil-mediated host defenses in vivo. J Immunol, 2005. 174(6): p. 3643-9.
59. Lequin, R.M., Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin Chem, 2005. 51(12): p. 2415-8.
60. Power, M.R., et al., A role of Toll-IL-1 receptor domain-containing adaptor-inducing IFN-beta in the host response to Pseudomonas aeruginosa lung infection in mice. J Immunol, 2007. 178(5): p. 3170-6.
61. Singh, S., et al., Granulocyte-macrophage colony stimulatory factor enhances the pro-inflammatory response of interferon-gamma-treated macrophages to Pseudomonas aeruginosa infection. PLoS One, 2015. 10(2): p. e0117447.
62. Courtney, J.M., M. Ennis, and J.S. Elborn, Cytokines and inflammatory mediators in cystic fibrosis. J Cyst Fibros, 2004. 3(4): p. 223-31.
63. Zhang, J., et al., Induction of apoptosis in macrophage cell line, J774, by the cell-free supernatant from Pseudomonas aeruginosa. Microbiol Immunol, 2003. 47(3): p. 199-206.