簡易檢索 / 詳目顯示

研究生: 李迴
論文名稱: CrFexMnTiyVzZru (0 ≤ x, y, z, u ≤ 2) 高熵合金之儲氫研究
Hydrogen Storage in CrFexMnTiyVzZru (0 ≤ x, y, z, u ≤ 2) High-Entropy Alloys
指導教授: 陳瑞凱
吳振名
口試委員: 洪健龍
林錕松
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 186
中文關鍵詞: 儲氫CrFexMnTiyVzZruAB2型C14 Laves相反位取代Laves相相關的BCC固溶體
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以六元CrFeMnTiVZr為主體,進行Fe、Ti、V、與Zr的個別調變,設計出拾數個非等莫耳合金,探討單一元素變量對合金吸氫的影響。真空電弧熔煉製備鑄造態合金,使用SEM與XRD儀鑑定合金的微結構,以BEI影像搭配EDS,進行合金內相的成份鑑定,合金擊碎過篩後執行活化消除毒化層,吸氫動力曲線與PCI探討合金於不同溫度、不同成份下之吸放氫機制,並以DSC量測放氫溫度。
    鑄造態CrFexMnTiyVzZru結構為接近AB2配比的C14 Laves相,呈樹枝晶偏析。偏離AB2配比時有析出相產生。吸氫測試後C14結構不變。XRD繞射峰半高寬偏高,是來自多元混合以及非AB2計量比時,產生的反位取代,造成的晶格扭曲。影響儲氫量的關鍵為合金整體與氫的結合焓,本研究合金最大吸氫量可達2.23 wt %。合金動力學表現優異。PCI曲線中平台區難以界定,是由於多元混和造成格隙尺寸及能階差異。室溫下最佳的可逆吸放氫量為1.09 wt %。部分配比會形成Laves相相關的BCC固溶體,因此有助於儲氫量的提升。


    摘 要 I 總目錄 V 圖目錄 IX 表目錄 XIX 壹、 前言 1 貳、文獻回顧 2 2.1. 儲氫技術簡介 2 2.1.1. 氣態壓縮儲氫 5 2.1.2. 低溫液態儲氫 5 2.1.3. 固態儲氫 7 2.2. 儲氫合金的發展與應用 9 2.2.1. 發展簡史 9 2.2.2. 儲氫合金的應用 13 2.3. 儲氫理論與儲氫性質 18 2.3.1. 儲氫原理 18 2.3.2. 表面活化處理 20 2.3.3. 動力學曲線 22 2.3.4. PCI曲線 25 2.3.5. van’t Hoff方程式 30 2.4. 儲氫合金分類簡介 32 2.4.1. AB5型儲氫合金 32 2.4.2. AB2型儲氫合金 35 2.4.3. AB型儲氫合金 37 2.4.4. A2B型儲氫合金 39 2.4.5. BCC型儲氫合金 40 2.4.6. 其它類型的儲氫合金 44 2.5. Laves phase晶體結構特性 45 2.6. 高熵合金 50 2.6.1. 高熵合金簡介 50 2.6.2. 高熵合金特性 51 叁、實驗方法與步驟 56 3.1. 合金設計與配置 56 3.1.1. 合金設計 56 3.1.2. 成份配置 58 3.1.3. 鑄造態合金製備 60 3.2. 微結構分析 62 3.2.1. SEM與EDS分析 62 3.2.2. XRD分析 62 3.3. 儲氫性質測試 63 3.3.1. 試片活化 64 3.3.2. 動力學測試 66 3.3.3. PCI測試 66 3.3.4. 熱示差掃描分析 68 肆、 結果與討論 70 4.1. 鑄造態合金之SEM金相與EDS成份分析 70 4.2. XRD晶體結構分析 93 4.3. 吸氫動力學曲線及機制探討 112 4.4. 吸放氫PCI曲線討論 137 4.5. Laves phase related BCC solid solution之研究 159 4.5.1. 微結構分析 159 4.5.2. 吸放氫性質測試 162 4.6. DSC熱示差掃描分析 165 4.7. 6E3系統性質統整並與6E2進行比較 169 4.7.1. CrFeMnTiVZr之儲氫性質 169 4.7.2. 6E2及6E3儲氫性質比較 176 伍、 結論 179 陸、參考文獻 182

    [1] A. Züttel, Materials Today 6 (2003) 24-33.
    [2] L. Schlapbach, A. Züttel, Nature 414 (2001) 353-358.
    [3] A. Andreasen, Hydrogen Storage Materials with Focus on Main Group I-II Elements, Department of Chemical Engineering, Tehnical University of Denmark, PhD Thesis, 2005.
    [4] G.D. Sandrock, Journal of Alloys and Compounds 293 (1999) 877-888.
    [5] T. Graham, Philosophical Transactions of the Royal Socirty of London 156 (1866) 399-439.
    [6] K. Papathanassopoulos, H. Wenzl, Journal of Physics F: Metal Physics 12 (1982) 1369-1381.
    [7] C.E. Lundin, Le Journal de Physique Colloques 40 (1979) C5-286-C5-291.
    [8] J.F. Mao, Z.P. Guo, H.K. Liu, X.B. Yu, Journal of Alloys and Compounds 487 (2009) 434-438.
    [9] L. Zaluski, A. Zaluska, J.O. Ström-Olsen, Journal of Alloys and Compounds 253 (1997) 70-79.
    [10] A. Zaluska, L. Zaluski, J.O. Strom-Olsen, Journal of Alloys and Compounds 288 (1999) 217-225.
    [11] S. Bianco, M. Giorcelli, S. Musso, M. Castellino, F. Agresti, A. Khandelwal, S. Lo Russo, M. Kumar, Y. Ando, A. Tagliaferro, Journal of Nanoscience and Nanotechnology 10 (2010) 3860-3866.
    [12] N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, O.M. Yaghi, Science 300 (2003) 1127-1129.
    [13] G.M. Cai, C.P. Chen, Y. An, G. H. Xu, L. X. Chen, Q. D. Wang, Journal of Rare Earths 20 (2002) 28-29.
    [14] G. Cacciola, N. Giordano, G. Restuccia, International Journal of Hydrogen Energy 9 (1984) 411-419.
    [15] D.K. Kohli, R.K. Khardekr, R. Singh, P.K. Gupta, International Journal of Hydrogen Energy 33 (2008) 417-422.
    [16] L.J. Florusse, C.J. Peters, J. Schoonman, K.C. Hester, C.A. Koh, S.F. Dec, K.N. Marsh, E.D. Sloan, Science 306 (2004) 469-471.
    [17] H. Akyıldız, M. Özenbaş, T. Öztürk, International Journal of Hydrogen Energy 31 (2006) 1379-1383.
    [18] J.H. Westbrook, Intermetallic Compounds, John Wiley and Sons, Inc., New York, 1967.
    [19] F.F. Westendorp, K.H.J. Buschow, Solid State Communications 7 (1969) 639-640.
    [20] A. Sieverts, Zeitschrift für Physikalische Chemie--Stöchiometrie und Verwandtschaftslehre 88 (1914) 451-478.
    [21] J.E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, Harper and Row, New York, 1983.
    [22] J.H.N. Van Vucht, F.A. Kuijpers, H.C.A.M. Bruning, Philips Research Reports 25 (1970) 133-140.
    [23] Y. Osumi, Hydrogen Storage Alloy—Its Properties and Applications, Agne Technical Center, Tokyo, 1993.
    [24] B.H. Kang, C.W. Park, C.S. Lee, International Journal of Hydrogen Energy 21 (1996) 769-774.
    [25] C. Boffito, F. Doni, L. Rosai, Journal of the Less Common Metals 104 (1984) 149-157.
    [26] 大角泰章, 水素吸藏合金, 化學工業社(日本東京, 1993), pp. 237-239.
    [27] R. Valarivan, C.N. Pillai, C.S. Swamy, Reaction Kinetics and Catalysis Letters 53 (1994) 429-440.
    [28] F. Schoofs, L. Stappers, J. Van Humbeeck, J. Fransaer, Functional Materials Letters 2 (2009) 107-112.
    [29] J. Cieslik, P. Kula, S.M. Filipek, Journal of Alloys and Compounds 480 (2009) 612-616.
    [30] F. Feng, M. Geng, D.O. Northwood, International Journal of Hydrogen Energy 26 (2001) 725-734.
    [31] J.J. Reilly, G.D. Sandrock, Scientific American 242 (1980) 118-129.
    [32] A. Züttel, in H2 net seminar, University of Birminghan, UK, 2004.
    [33] P. Tessier, H. Enoki, M. Bououdina, E. Akiba, Journal of Alloys and Compounds 268 (1998) 285-289.
    [34] H.C. Kim, J.Y. Lee, International Journal of Hydrogen Energy 10 (1985) 543-545.
    [35] 余學斌, 吳鑄, 黃太仲, 陳金舟, 夏保佳, 徐乃欣, 材料報導 18 (2004) 85.
    [36] M. Martin, C. Gommel, C. Borkhart, E. Fromm, Journal of Alloys and Compounds 238 (1996) 193-201.
    [37] C.N. Park, J.Y. Lee, Journal of the Less Common Metals 91 (1983) 189-201.
    [38] K.C. Chou, Q. Li, Q. Lin, L.J. Jiang, K.D. Xu, International Journal of Hydrogen Energy 30 (2005) 301-309.
    [39] P.S. Rudman, Journal of the Less Common Metals 89 (1983) 93-110.
    [40] H.S. Chung, J.Y. Lee, Journal of the Less Common Metals 123 (1986) 209-222.
    [41] 劉宗憲, 國立清華大學材料科學工程研究所碩士論文, 2010.
    [42] J.N. Armor, Chemtech 22 (1992) 557-563.
    [43] W. Westwood, MRS Bulletin 13 (1988) 46-51.
    [44] H. Baker, H. Okamoto, (Eds.), ASM Handbook: Volume 3, Alloy Phase Diagrams, ASM International, USA (1992) p. 145.
    [45] A.J. Kumnick, H.H. Johnson, Acta Metallurgica 25 (1977) 891-895.
    [46] A.J. Kumnick, H.H. Johnson, Metallurgical Transactions A 6 (1975) 1087-1091.
    [47] D.K. Kuhn, H.H. Johnson, Acta Metallurgica et Materialia 39 (1991) 2901-2908.
    [48] J.K. Wu, International Journal of Hydrogen Energy 17 (1992) 917-921.
    [49] A. Züttel, Naturwissenschaften 91 (2004) 157-172.
    [50] F. Cuevas, J.M. Joubert, M. Latroche, A. Percheron-Guégan, Applied Physics A 72 (2001) 225-238.
    [51] J.J. Reilly, R.H. Wiswall Jr, Inorganic Chemistry 13 (1974) 218-222.
    [52] P. Huang, A.J. Goudy, J.T. Koh, Journal of the Less Common Metals 155 (1989) 111-118.
    [53] M.D. Graef, M.E. McHenry, Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry, Cambridge University Press, U. K., 2012.
    [54] T. Nambu, H. Ezaki, H. Yukawa, M. Morinaga, Journal of Alloys and Compounds 293 (1999) 213-216.
    [55] S.V. Mitrokhin, V.N. Verbetsky, R.R. Kajumov, H. Cunmao, Z. Yufen, Journal of Alloys and Compounds 199 (1993) 155-160.
    [56] J.J. Reilly, R.H. Wiswall Jr, Inorganic Chemistry 7 (1968) 2254-2256.
    [57] P. Wang, A.M. Wang, H.F. Zhang, B.Z. Ding, Z.Q. Hu, Journal of Alloys and Compounds 313 (2000) 218-223.
    [58] P. Selvam, B. Viswanathan, C.S. Swamy, V. Srinivasan, International Journal of Hydrogen Energy 11 (1986) 169-192.
    [59] S. Ono, K. Nomura, Y. Ikeda, Journal of the Less Common Metals 72 (1980) 159-165.
    [60] Z. Hang, X. Xiao, D. Tan, Z. He, W. Li, S. Li, C. Chen, L. Chen, International Journal of Hydrogen Energy 35 (2010) 3080-3086.
    [61] Y. Nakamura, E. Akiba, Journal of Alloys and Compounds 311 (2000) 317-321.
    [62] X. Yu, Z. Wu, B. Xia, T. Huang, J. Chen, Z. Wang, N. Xu, Journal of materials research 18 (2003) 2533-2536.
    [63] G.G. Libowitz, A.J. Maeland, Materials Science Forum, 31 (1988) 177-196.
    [64] M. Tsukahara, K. Takahashi, T. Mishima, A. Isomura, T. Sakai, Journal of Alloys and Compounds 236 (1996) 151-156.
    [65] E. Akiba, H. Iba, Intermetallics 6 (1998) 461-470.
    [66] A. Aurora, M. Mancini, D.M. Gattia, A. Montone, L. Pilloni, E. Todini, M.V. Antisari, Materials and Manufacturing Processes 24 (2009) 1058-1063.
    [67] 廖彬, 雷永泉, 吕光烈, 陳立新, 葛红衛, 潘洪革, 金属學報 41 (2005) 41-48.
    [68] B.D. Dunlap, P.J. Viccaro, G.K. Shenoy, Journal of the Less Common Metals 74 (1980) 75-79.
    [69] F. Laves, H. Witte, Metallwirtschaft 15 (1936) 840-842.
    [70] D.J. Thoma, J.H. Perepezko, Journal of Alloys and Compounds 224 (1995) 330-341.
    [71] J.H. Zhu, C.T. Liu, L.M. Pike, P.K. Liaw, Intermetallics 10 (2002) 579-595.
    [72] R.P. Elliot, W. Rostoker, Transactions of the American Society for Metals 50 (1958) 617-633.
    [73] O. Bernauer, J. Töpler, D. Noreus, R. Hempelmann, D. Richter, International Journal of Hydrogen Energy 14 (1989) 187-200.
    [74] J.H. Zhu, P.K. Liaw, C.T. Liu, Materials Science and Engineering: A 239–240 (1997) 260-264.
    [75] F. Stein, M. Palm, G. Sauthoff, Intermetallics 13 (2005) 1056-1074.
    [76] J.H. Zhu, C.T. Liu, Acta Materialia 48 (2000) 2339-2347.
    [77] J.H. Zhu, L.M. Pike, C.T. Liu, P.K. Liaw, Acta Materialia 47 (1999) 2003-2018.
    [78] E. Paul, L.J. Swartzendruber, Bulletin of Alloy Phase Diagrams 7 (1986) 248-254.
    [79] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Advanced Engineering Materials 6 (2004) 299-303.
    [80] 黃國雄, 國立清華大學材料科學工程研究所碩士論文, 1996.
    [81] A. Mackay, Crystallography Reports 46 (2001) 524-526.
    [82] 蔡哲瑋, 國立清華大學材料科學工程研究所碩士論文, 2003.
    [83] 鄭耿豪, 國立清華大學材料科學工程研究所碩士論文, 2005.
    [84] 李宗達, 國立清華大學材料科學工程研究所碩士論文, 2008.
    [85] 林俊廷, 國立清華大學材料科學工程研究所碩士論文, 2007.
    [86] 蘇聖淳, 國立清華大學材料科學工程研究所碩士論文, 2012.
    [87] A.R. Miedema, K.H.J. Buschow, H.H. Van Mal, Journal of the Less Common Metals 49 (1976) 463-472.
    [88] 許臻豪, 國立清華大學材料科學工程研究所碩士論文, 2008.
    [89] X.B. Yu, J.Z. Chen, Z. Wu, B.J. Xia, N.X. Xu, International Journal of Hydrogen Energy 29 (2004) 1377-1381.
    [90] 林偉恩, 國立清華大學材料科學工程研究所碩士論文, 2009.
    [91] S. Semboshi, N. Masahashi, S. Hanada, Acta Materialia 49 (2001) 927-935.
    [92] X.B. Yu, Z.X. Yang, S.L. Feng, Z. Wu, N.X. Xu, International Journal of Hydrogen Energy 31 (2006) 1176-1181.
    [93] S. Luo, W. Luo, J. Clewley, T.B. Flanagan, R. Bowman Jr, Journal of Alloys and Compounds 231 (1995) 473-478.
    [94] M.T. Hagström, S.N. Klyamkin, P.D. Lund, Journal of Alloys and Compounds 293–295 (1999) 67-73.
    [95] N. Hanada, S. Orimo, H. Fujii, Journal of Alloys and Compounds 356–357 (2003) 429-432.
    [96] K. Young, R. Regmi, G. Lawes, T. Ouchi, B. Reichman, M.A. Fetcenko, A. Wu, Journal of Alloys and Compounds 490 (2010) 282-292.
    [97] D. Shaltiel, Journal of the Less Common Metals 62 (1978) 407-416.
    [98] D.P. Shoemaker, C.B. Shoemaker, Journal of the Less Common Metals 68 (1979) 43-58.
    [99] M. Bououdina, D. Grant, G. Walker, International Journal of Hydrogen Energy 31 (2006) 177-182.
    [100] H.G. Pan, Y.F. Zhu, M.G. Gao, Y.F. Liu, R. Li, Y.Q. Lei, Q.D. Wang, Journal of Alloys and Compounds 370 (2004) 254-260.
    [101] J.F. Herbst, Journal of Alloys and Compounds 337 (2002) 99-107.
    [102] H. Yukawa, K. Nakatsuka, M. Morinaga, Solar Energy Materials and Solar Cells 62 (2000) 75-80.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE