研究生: |
李迴 |
---|---|
論文名稱: |
CrFexMnTiyVzZru (0 ≤ x, y, z, u ≤ 2) 高熵合金之儲氫研究 Hydrogen Storage in CrFexMnTiyVzZru (0 ≤ x, y, z, u ≤ 2) High-Entropy Alloys |
指導教授: |
陳瑞凱
吳振名 |
口試委員: |
洪健龍
林錕松 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 186 |
中文關鍵詞: | 儲氫CrFexMnTiyVzZru 、AB2型C14 Laves相 、反位取代 、Laves相相關的BCC固溶體 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以六元CrFeMnTiVZr為主體,進行Fe、Ti、V、與Zr的個別調變,設計出拾數個非等莫耳合金,探討單一元素變量對合金吸氫的影響。真空電弧熔煉製備鑄造態合金,使用SEM與XRD儀鑑定合金的微結構,以BEI影像搭配EDS,進行合金內相的成份鑑定,合金擊碎過篩後執行活化消除毒化層,吸氫動力曲線與PCI探討合金於不同溫度、不同成份下之吸放氫機制,並以DSC量測放氫溫度。
鑄造態CrFexMnTiyVzZru結構為接近AB2配比的C14 Laves相,呈樹枝晶偏析。偏離AB2配比時有析出相產生。吸氫測試後C14結構不變。XRD繞射峰半高寬偏高,是來自多元混合以及非AB2計量比時,產生的反位取代,造成的晶格扭曲。影響儲氫量的關鍵為合金整體與氫的結合焓,本研究合金最大吸氫量可達2.23 wt %。合金動力學表現優異。PCI曲線中平台區難以界定,是由於多元混和造成格隙尺寸及能階差異。室溫下最佳的可逆吸放氫量為1.09 wt %。部分配比會形成Laves相相關的BCC固溶體,因此有助於儲氫量的提升。
[1] A. Züttel, Materials Today 6 (2003) 24-33.
[2] L. Schlapbach, A. Züttel, Nature 414 (2001) 353-358.
[3] A. Andreasen, Hydrogen Storage Materials with Focus on Main Group I-II Elements, Department of Chemical Engineering, Tehnical University of Denmark, PhD Thesis, 2005.
[4] G.D. Sandrock, Journal of Alloys and Compounds 293 (1999) 877-888.
[5] T. Graham, Philosophical Transactions of the Royal Socirty of London 156 (1866) 399-439.
[6] K. Papathanassopoulos, H. Wenzl, Journal of Physics F: Metal Physics 12 (1982) 1369-1381.
[7] C.E. Lundin, Le Journal de Physique Colloques 40 (1979) C5-286-C5-291.
[8] J.F. Mao, Z.P. Guo, H.K. Liu, X.B. Yu, Journal of Alloys and Compounds 487 (2009) 434-438.
[9] L. Zaluski, A. Zaluska, J.O. Ström-Olsen, Journal of Alloys and Compounds 253 (1997) 70-79.
[10] A. Zaluska, L. Zaluski, J.O. Strom-Olsen, Journal of Alloys and Compounds 288 (1999) 217-225.
[11] S. Bianco, M. Giorcelli, S. Musso, M. Castellino, F. Agresti, A. Khandelwal, S. Lo Russo, M. Kumar, Y. Ando, A. Tagliaferro, Journal of Nanoscience and Nanotechnology 10 (2010) 3860-3866.
[12] N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, O.M. Yaghi, Science 300 (2003) 1127-1129.
[13] G.M. Cai, C.P. Chen, Y. An, G. H. Xu, L. X. Chen, Q. D. Wang, Journal of Rare Earths 20 (2002) 28-29.
[14] G. Cacciola, N. Giordano, G. Restuccia, International Journal of Hydrogen Energy 9 (1984) 411-419.
[15] D.K. Kohli, R.K. Khardekr, R. Singh, P.K. Gupta, International Journal of Hydrogen Energy 33 (2008) 417-422.
[16] L.J. Florusse, C.J. Peters, J. Schoonman, K.C. Hester, C.A. Koh, S.F. Dec, K.N. Marsh, E.D. Sloan, Science 306 (2004) 469-471.
[17] H. Akyıldız, M. Özenbaş, T. Öztürk, International Journal of Hydrogen Energy 31 (2006) 1379-1383.
[18] J.H. Westbrook, Intermetallic Compounds, John Wiley and Sons, Inc., New York, 1967.
[19] F.F. Westendorp, K.H.J. Buschow, Solid State Communications 7 (1969) 639-640.
[20] A. Sieverts, Zeitschrift für Physikalische Chemie--Stöchiometrie und Verwandtschaftslehre 88 (1914) 451-478.
[21] J.E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, Harper and Row, New York, 1983.
[22] J.H.N. Van Vucht, F.A. Kuijpers, H.C.A.M. Bruning, Philips Research Reports 25 (1970) 133-140.
[23] Y. Osumi, Hydrogen Storage Alloy—Its Properties and Applications, Agne Technical Center, Tokyo, 1993.
[24] B.H. Kang, C.W. Park, C.S. Lee, International Journal of Hydrogen Energy 21 (1996) 769-774.
[25] C. Boffito, F. Doni, L. Rosai, Journal of the Less Common Metals 104 (1984) 149-157.
[26] 大角泰章, 水素吸藏合金, 化學工業社(日本東京, 1993), pp. 237-239.
[27] R. Valarivan, C.N. Pillai, C.S. Swamy, Reaction Kinetics and Catalysis Letters 53 (1994) 429-440.
[28] F. Schoofs, L. Stappers, J. Van Humbeeck, J. Fransaer, Functional Materials Letters 2 (2009) 107-112.
[29] J. Cieslik, P. Kula, S.M. Filipek, Journal of Alloys and Compounds 480 (2009) 612-616.
[30] F. Feng, M. Geng, D.O. Northwood, International Journal of Hydrogen Energy 26 (2001) 725-734.
[31] J.J. Reilly, G.D. Sandrock, Scientific American 242 (1980) 118-129.
[32] A. Züttel, in H2 net seminar, University of Birminghan, UK, 2004.
[33] P. Tessier, H. Enoki, M. Bououdina, E. Akiba, Journal of Alloys and Compounds 268 (1998) 285-289.
[34] H.C. Kim, J.Y. Lee, International Journal of Hydrogen Energy 10 (1985) 543-545.
[35] 余學斌, 吳鑄, 黃太仲, 陳金舟, 夏保佳, 徐乃欣, 材料報導 18 (2004) 85.
[36] M. Martin, C. Gommel, C. Borkhart, E. Fromm, Journal of Alloys and Compounds 238 (1996) 193-201.
[37] C.N. Park, J.Y. Lee, Journal of the Less Common Metals 91 (1983) 189-201.
[38] K.C. Chou, Q. Li, Q. Lin, L.J. Jiang, K.D. Xu, International Journal of Hydrogen Energy 30 (2005) 301-309.
[39] P.S. Rudman, Journal of the Less Common Metals 89 (1983) 93-110.
[40] H.S. Chung, J.Y. Lee, Journal of the Less Common Metals 123 (1986) 209-222.
[41] 劉宗憲, 國立清華大學材料科學工程研究所碩士論文, 2010.
[42] J.N. Armor, Chemtech 22 (1992) 557-563.
[43] W. Westwood, MRS Bulletin 13 (1988) 46-51.
[44] H. Baker, H. Okamoto, (Eds.), ASM Handbook: Volume 3, Alloy Phase Diagrams, ASM International, USA (1992) p. 145.
[45] A.J. Kumnick, H.H. Johnson, Acta Metallurgica 25 (1977) 891-895.
[46] A.J. Kumnick, H.H. Johnson, Metallurgical Transactions A 6 (1975) 1087-1091.
[47] D.K. Kuhn, H.H. Johnson, Acta Metallurgica et Materialia 39 (1991) 2901-2908.
[48] J.K. Wu, International Journal of Hydrogen Energy 17 (1992) 917-921.
[49] A. Züttel, Naturwissenschaften 91 (2004) 157-172.
[50] F. Cuevas, J.M. Joubert, M. Latroche, A. Percheron-Guégan, Applied Physics A 72 (2001) 225-238.
[51] J.J. Reilly, R.H. Wiswall Jr, Inorganic Chemistry 13 (1974) 218-222.
[52] P. Huang, A.J. Goudy, J.T. Koh, Journal of the Less Common Metals 155 (1989) 111-118.
[53] M.D. Graef, M.E. McHenry, Structure of Materials: An Introduction to Crystallography, Diffraction and Symmetry, Cambridge University Press, U. K., 2012.
[54] T. Nambu, H. Ezaki, H. Yukawa, M. Morinaga, Journal of Alloys and Compounds 293 (1999) 213-216.
[55] S.V. Mitrokhin, V.N. Verbetsky, R.R. Kajumov, H. Cunmao, Z. Yufen, Journal of Alloys and Compounds 199 (1993) 155-160.
[56] J.J. Reilly, R.H. Wiswall Jr, Inorganic Chemistry 7 (1968) 2254-2256.
[57] P. Wang, A.M. Wang, H.F. Zhang, B.Z. Ding, Z.Q. Hu, Journal of Alloys and Compounds 313 (2000) 218-223.
[58] P. Selvam, B. Viswanathan, C.S. Swamy, V. Srinivasan, International Journal of Hydrogen Energy 11 (1986) 169-192.
[59] S. Ono, K. Nomura, Y. Ikeda, Journal of the Less Common Metals 72 (1980) 159-165.
[60] Z. Hang, X. Xiao, D. Tan, Z. He, W. Li, S. Li, C. Chen, L. Chen, International Journal of Hydrogen Energy 35 (2010) 3080-3086.
[61] Y. Nakamura, E. Akiba, Journal of Alloys and Compounds 311 (2000) 317-321.
[62] X. Yu, Z. Wu, B. Xia, T. Huang, J. Chen, Z. Wang, N. Xu, Journal of materials research 18 (2003) 2533-2536.
[63] G.G. Libowitz, A.J. Maeland, Materials Science Forum, 31 (1988) 177-196.
[64] M. Tsukahara, K. Takahashi, T. Mishima, A. Isomura, T. Sakai, Journal of Alloys and Compounds 236 (1996) 151-156.
[65] E. Akiba, H. Iba, Intermetallics 6 (1998) 461-470.
[66] A. Aurora, M. Mancini, D.M. Gattia, A. Montone, L. Pilloni, E. Todini, M.V. Antisari, Materials and Manufacturing Processes 24 (2009) 1058-1063.
[67] 廖彬, 雷永泉, 吕光烈, 陳立新, 葛红衛, 潘洪革, 金属學報 41 (2005) 41-48.
[68] B.D. Dunlap, P.J. Viccaro, G.K. Shenoy, Journal of the Less Common Metals 74 (1980) 75-79.
[69] F. Laves, H. Witte, Metallwirtschaft 15 (1936) 840-842.
[70] D.J. Thoma, J.H. Perepezko, Journal of Alloys and Compounds 224 (1995) 330-341.
[71] J.H. Zhu, C.T. Liu, L.M. Pike, P.K. Liaw, Intermetallics 10 (2002) 579-595.
[72] R.P. Elliot, W. Rostoker, Transactions of the American Society for Metals 50 (1958) 617-633.
[73] O. Bernauer, J. Töpler, D. Noreus, R. Hempelmann, D. Richter, International Journal of Hydrogen Energy 14 (1989) 187-200.
[74] J.H. Zhu, P.K. Liaw, C.T. Liu, Materials Science and Engineering: A 239–240 (1997) 260-264.
[75] F. Stein, M. Palm, G. Sauthoff, Intermetallics 13 (2005) 1056-1074.
[76] J.H. Zhu, C.T. Liu, Acta Materialia 48 (2000) 2339-2347.
[77] J.H. Zhu, L.M. Pike, C.T. Liu, P.K. Liaw, Acta Materialia 47 (1999) 2003-2018.
[78] E. Paul, L.J. Swartzendruber, Bulletin of Alloy Phase Diagrams 7 (1986) 248-254.
[79] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Advanced Engineering Materials 6 (2004) 299-303.
[80] 黃國雄, 國立清華大學材料科學工程研究所碩士論文, 1996.
[81] A. Mackay, Crystallography Reports 46 (2001) 524-526.
[82] 蔡哲瑋, 國立清華大學材料科學工程研究所碩士論文, 2003.
[83] 鄭耿豪, 國立清華大學材料科學工程研究所碩士論文, 2005.
[84] 李宗達, 國立清華大學材料科學工程研究所碩士論文, 2008.
[85] 林俊廷, 國立清華大學材料科學工程研究所碩士論文, 2007.
[86] 蘇聖淳, 國立清華大學材料科學工程研究所碩士論文, 2012.
[87] A.R. Miedema, K.H.J. Buschow, H.H. Van Mal, Journal of the Less Common Metals 49 (1976) 463-472.
[88] 許臻豪, 國立清華大學材料科學工程研究所碩士論文, 2008.
[89] X.B. Yu, J.Z. Chen, Z. Wu, B.J. Xia, N.X. Xu, International Journal of Hydrogen Energy 29 (2004) 1377-1381.
[90] 林偉恩, 國立清華大學材料科學工程研究所碩士論文, 2009.
[91] S. Semboshi, N. Masahashi, S. Hanada, Acta Materialia 49 (2001) 927-935.
[92] X.B. Yu, Z.X. Yang, S.L. Feng, Z. Wu, N.X. Xu, International Journal of Hydrogen Energy 31 (2006) 1176-1181.
[93] S. Luo, W. Luo, J. Clewley, T.B. Flanagan, R. Bowman Jr, Journal of Alloys and Compounds 231 (1995) 473-478.
[94] M.T. Hagström, S.N. Klyamkin, P.D. Lund, Journal of Alloys and Compounds 293–295 (1999) 67-73.
[95] N. Hanada, S. Orimo, H. Fujii, Journal of Alloys and Compounds 356–357 (2003) 429-432.
[96] K. Young, R. Regmi, G. Lawes, T. Ouchi, B. Reichman, M.A. Fetcenko, A. Wu, Journal of Alloys and Compounds 490 (2010) 282-292.
[97] D. Shaltiel, Journal of the Less Common Metals 62 (1978) 407-416.
[98] D.P. Shoemaker, C.B. Shoemaker, Journal of the Less Common Metals 68 (1979) 43-58.
[99] M. Bououdina, D. Grant, G. Walker, International Journal of Hydrogen Energy 31 (2006) 177-182.
[100] H.G. Pan, Y.F. Zhu, M.G. Gao, Y.F. Liu, R. Li, Y.Q. Lei, Q.D. Wang, Journal of Alloys and Compounds 370 (2004) 254-260.
[101] J.F. Herbst, Journal of Alloys and Compounds 337 (2002) 99-107.
[102] H. Yukawa, K. Nakatsuka, M. Morinaga, Solar Energy Materials and Solar Cells 62 (2000) 75-80.