簡易檢索 / 詳目顯示

研究生: 吳宜真
Yi-Chen Wu
論文名稱: 具有先進先出順序之光學多工器的建造效率
On the Construction Efficiency of Fault Tolerant Optical 2-to-1 FIFO Multiplexers
指導教授: 鄭傑
Jay Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 22
中文關鍵詞: 容錯能力先進先出多工器光記憶體光交換機
外文關鍵詞: fault tolerant capability, FIFO multiplexers, optical buffers, optical switches
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了實現一個全光的封包交換網路,我們需要光記憶體來解決封包間相互競爭有限資源所產生的衝突。近年來,透過光交換機以及光纖延遲線來建造光記憶體的方法引起很多研究學者的興趣。而從實際層面觀點來看,容錯能力是在設計光記憶體時的一個很重要考量。

    在這篇論文中,我們著重在具有容錯能力的二對一先進先出光學多工器,我們考慮由一個(M+2)×(M+2)的光交換機,與M條具有延遲為d1,d2,…,dM的光纖延遲線組成的回授系統,其中M條光纖延遲線從光交換機的M個輸出連接到M個輸入,剩下兩個輸入當作二對一多工器的輸入,另兩個輸出則是二對一多工器的輸出。在文獻[20]中,作者提供一種選擇延遲的方法,使得上述回授系統在最多F條光纖斷掉時,仍可正常操作成二對一先進先出光學多工器,而建造效率也在此篇文獻中被用來比較不同延遲選擇下所對應的系統性能。作者最後提出一個猜測,關於在最佳的延遲選擇下,漸近建造效率的下界恰好就是漸近建造效率。

    在這篇論文中,我們想要證明文獻[20]中的猜測為真。但我們並沒有解決這個問題,我們只提供一些新的結果和觀察來幫助我們解決上述的猜測。首先,我們推導出針對某些F,在最佳的延遲選擇下,延遲為 的光纖個數的數學表示法。其次,假設當系統容錯能力為F時,在最佳的延遲選擇下,我們得到的延遲數列為di*,而容錯能力為F+1時相對應的延遲數列為hi*,則我們可證明di*≧hi*。最後我們提出一些猜測可用來獲得漸近建造效率的數學表示式。


    To resolve packet conflicts due to limited resources, optical buffers are necessary in all-optical packet-switched networks. Recently, constructing optical buffers directly via optical Switches and fiber Delay Lines (SDL) has attracted a lot of attention. Fault tolerant capability is an important design issue in the constructions of optical buffers from a practical perspective, and such an issue has seldom been theoretically addressed before. In this thesis, we focus on fault tolerant 2-to-1 FIFO multiplexers. We consider a feedback system consisting of an
    (M +2)×(M +2) optical crossbar switch and M fiber delay lines with delays d1, d2, . . . , dM. In [20], a class of choices of the fiber delays d1, d2, . . . , dM such that the feedback system can still be operated as a 2-to-1 FIFO multiplexer even after up to F of the fibers are broken was provided. To compare various choices of the fiber delays,
    the construction efficiency was used in [20] as a performance measure for a choice of the fiber delays. In this thesis, we give some new results and observations that could be helpful in solving the conjecture in [20] regarding the closed-form expression of the asymptotic
    construction efficiency for the optimal choice (in the sense of maximizing the buffer size) of the fiber delays. First, we derive a closed-form expression for n_(ℓ+2)*, the number of fibers with delay 2^(ℓ+1) when the choice of fiber delays is optimal, for some values of F. Furthermore, we show that di* ≧ hi* for all i = 1, 2, . . . ,M, where di* (resp. hi* ) denote the sequence of fiber delays given by the optimal choice such that the feedback system can tolerate up to F (resp. F +1) failures of the fiber delay lines. Finally, we give some conjectures which (if true) could be used to obtain the closed-form expression for the asymptotic construction efficiency.

    Abstract i Contents ii List of Figures iv List of Tables v 1 Introduction 1 2 Review of Previous Works 6 2.1 Constructions of Fault Tolerant Optical 2-to-1 FIFO Multiplexers......6 2.1.1 A Class of Constructions of Fault Tolerant Optical 2-to-1 FIFO Multiplexers......6 2.1.2 An Optimal Construction of a Fault Tolerant Optical 2-to-1 FIFO Multiplexer......7 2.2 Closed-form Expressions for the First Few Values of n_k......8 2.3 Construction Efficiency of Fault Tolerant Optical 2-to-1 FIFO Multiplexers . 11 3 Main Results 13 4 Conclusions 19 Bibliography 19

    [1] C. J. Chang-Hasnain, P. C. Ku, J. Kim, and S. L. Chuang, “Variable optical buffer using slow light in semiconductor nanostructure,” Proceedings of the IEEE, vol. 9, pp. 1884-1897, November 2003.
    [2] M. R. Fisher, S. Minin, and S. L. Chuang, “Tunable optical group delay in an active waveguide semiconductor resonator,” IEEE Journal of Selected Topics in Quantum
    Electronics, vol. 11, pp. 197–203, January/February 2005.
    [3] Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an
    optical fiber,” Physical Review Letters, vol. 94, 153902, April 2005.
    [4] D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical
    buffering,” Optics Express, vol. 13, pp. 6234–6249, August 2005.
    [5] Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, “12-GHz-Bandwidth SBS Slow Light in Optical Fibers,” in Proceedings International Conference
    on Optical Fiber Communications (OFC’06), Anaheim, CA, USA, March 5–10, 2006, PDP1.
    [6] M. J. Karol, “Shared-memory optical packet (ATM) switch,” in Proceedings SPIE vol. 2024: Multigigabit Fiber Communication Systems (1993), October 1993, pp. 212–222.
    [7] I. Chlamtac, A. Fumagalli, L. G. Kazovsky, P. Melman, W. H. Nelson, P. Poggiolini, M. Cerisola, A. N. M. M. Choudhury, T. K. Fong, R. T. Hofmeister, C.-L. Lu, A.
    Mekkittikul, D. J. M. Sabido IX, C.-J. Suh, and E. W. M. Wong, “Cord: contention resolution by delay lines,” IEEE Journal on Selected Areas in Communications, vol. 14, pp. 1014–1029, June 1996.
    [8] I. Chlamtac, A. Fumagalli, and C.-J. Suh, “Multibuffer delay line architectures for efficient contention resolution in optical switching nodes,” IEEE Transactions on Communications, vol. 48, pp. 2089–2098, December 2000.
    [9] J. T. Tsai, “COD: architectures for high speed time-based multiplexers and buffered packet switches,” Ph.D. Dissertation, University of California, San Diego, CA, USA,
    1995.
    [10] R. L. Cruz and J.-T. Tsai, “COD: alternative architectures for high speed packet switching,”
    IEEE/ACM Transactions on Networking, vol. 4, pp. 11–21, February 1996.
    [11] D. K. Hunter, D. Cotter, R. B. Ahmad, D. Cornwell, T. H. Gilfedder, P. J. Legg, and I. Andonovic, “2 × 2 buffered switch fabrics for traffic routing, merging and shaping in photonic cell networks,” IEEE Journal of Lightwave Technology, vol. 15, pp. 86–101, January 1997.
    [12] D. K. Hunter, W. D. Cornwell, T. H. Gilfedder, A. Franzen, and I. Andonovic, “SLOB: a switch with large optical buffers for packet switching,” IEEE Journal of Lightwave Technology, vol. 16, pp. 1725–1736, October 1998.
    [13] E. A. Varvarigos, “The “packing” and the “scheduling packet” switch architectures for
    almost all-optical lossless networks,” IEEE Journal of Lightwave Technology, vol. 16, pp. 1757–1767, October 1998.
    [14] D. K. Hunter, M. C. Chia, and I. Andonovic, “Buffering in optical packet switches,” IEEE Journal of Lightwave Technology, vol. 16, pp. 2081–2094, December 1998.
    [15] D. K. Hunter and I. Andonovic, “Approaches to optical Internet packet switching,” IEEE Communications Magazine, vol. 38, pp. 116–122, September 2000.
    [16] S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic packet switching: An overview,” IEEE Communications Magazine, vol. 38, pp. 84–94, February 2000.
    [17] C.-S. Chang, D.-S. Lee, and C.-K. Tu, “Recursive construction of FIFO optical multiplexers with switched delay lines,” IEEE Transactions on Information Theory, vol. 50, pp. 3221–3233, December 2004.
    [18] C.-S. Chang, D.-S. Lee, and C.-K. Tu, “Using switched delay lines for exact emulation of FIFO multiplexers with variable length bursts,” IEEE Journal on Selected Areas in
    Communications, vol. 24, pp. 108–117, April 2006.
    [19] C.-C. Chou, C.-S. Chang, D.-S. Lee and J. Cheng, “A necessary and sufficient condition for the construction of 2-to-1 optical FIFO multiplexers by a single crossbar switch and fiber delay lines,” IEEE Transactions on Information Theory, vol. 52, pp. 4519–4531, October 2006.
    [20] J. Cheng, “Constructions of fault tolerant optical 2-to-1 FIFO multiplexers,” submitted to IEEE Transactions on Information Theory, 2006.
    [21] C.-S. Chang, Y.-T. Chen, and D.-S. Lee, “Constructions of optical FIFO queues,” IEEE Transactions on Information Theory, vol. 52, pp. 2838–2843, June 2006.
    [22] A. D. Sarwate and V. Anantharam, “Exact emulation of a priority queue with a switch and delay lines,” Queueing Systems: Theory and Applications, vol. 53, pp. 115–125,
    July 2006.
    [23] H.-C. Chiu, C.-S. Chang, J. Cheng, and D.-S. Lee, “A simple proof for the constructions of optical priority queues,” submitted to Queueing Systems: Theory and Applications, 2005.
    [24] H.-C. Chiu, C.-S. Chang, J. Cheng, and D.-S. Lee, ”Using a single switch with O(M) inputs/outputs for the construction of an optical priority queue with O(M3) buffer,”to appear in Proceedings IEEE 26th Annual Conference on Computer Communications (INFOCOM’07 Minisymposium), Anchorage, AK, USA, May 6-12, 2007.
    [25] C.-S. Chang, Y.-T. Chen, J. Cheng, and D.-S. Lee, “Multistage constructions of linear compressors, non-overtaking delay lines, and flexible delay lines,”submitted to IEEE/ACM Transactions on Networking. Conference version in Proceedings IEEE 25th Annual Conference on Computer Communications (INFOCOM’06), Barcelona, Spain, April 23–29, 2006.
    [26] C.-S. Chang, T.-H. Chao, J. Cheng, and D.-S. Lee, ”Constructions of fault tolerant linear compressors and linear decompressors,” to appear in Proceedings IEEE 26th Annual Conference on Computer Communications (INFOCOM’07), Anchorage, AK, USA, May 6-12, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE