簡易檢索 / 詳目顯示

研究生: 李國威
Lee, Kuo-Wei
論文名稱: 全能域高靈敏度波那圓柱中子能譜儀之設計、校正與應用
Design, Calibration and Tests of a High-Sensitivity Extended-Range Bonner Cylinder Spectrometer
指導教授: 江祥輝
Jiang, Shiang-Huei
許榮鈞
Sheu, Rong-Jiun
口試委員: 洪明崎
袁明程
林威廷
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 核子工程與科學研究所
Nuclear Engineering and Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 141
中文關鍵詞: 高能中子量測波那球中子能譜儀波那圓柱中子能譜儀宇宙射線誘發中子中子偵檢器校正
外文關鍵詞: High-energy neutron measurement, Bonner sphere spectrometer, Bonner cylinder spectrometer, Cosmic-ray induced meutron, Neutron dosemeter calibration
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著大型加速器的蓬勃發展,高能中子的劑量評估方法快速發展且需求殷切。本論文透過引進商用波那球以及自行設計之高靈敏度波那圓柱系統,建立該領域之量測與模擬技術;除透過核研所國家游離輻射標準實驗室完成系統驗證,並應用於宇宙射線誘發中子能譜量測等實務,確認系統之可靠度與使用限制;此外,提出中子偵檢儀器於高能輻射場之校正因子修正方法,彌補國內目前尚欠缺之校正技術缺口。
    商用波那球受限於偵檢器體積,量測靈敏度低,應用領域受到侷限。本論文所自行設計之高靈敏度波那圓柱系統,量測靈敏度較商用系統增加約17.9倍;搭配蒙地卡羅程式計算之偵檢器響應函數,可進行從熱中子延升至GeV能量區間之全能域中子能譜量測。惟波那圓柱系統受限於軸向極角不對稱因素,系統響應函數與中子入射方向高度相關;為此,本論文共發展出平面單向、均向與點射源入射等3種模式以為因應。此外,對於國內目前尚欠缺的高能中子輻射場校正技術,本研究結合蒙地卡羅計算方法與國家游離輻射標準實驗室校正結果,提出根據不同輻射場特性所對應之校正因子修正方法,將國家游離輻射標準實驗室中子校正適用能量區間延伸至GeV等級。
    本論文以商用波那球系統為標準,有系統地探討高靈敏度波那圓柱中子能譜儀物理特性與適用性。未來使用者將可以商用系統1/4以下的價格建置本中子偵檢系統;此外,本論文所提出的高能輻射場中子偵檢器校正因子修正方法,可讓使用者依據不同輻射場特性,進行快速而又不失準確程度的中子劑量評估方式;此方法除可確保工作人員輻射安全無虞,更可據此節省將中子儀器送往國際高能輻射場進行校正所需之高額費用與冗長時程。
    期許本論文研究成果能提供予設施業主與主管機關參考,為國內輻射應用領域略盡棉薄之力。


    Bonner spheres are widely used to determine the energy spectrum of a neutron field. With the introduction of high-Z metal in moderator as a neutron multiplier, the effective energy range of Bonner spheres can be extended to GeV neutrons. Because of small active volume of the central probe, the detection efficiency of Bonner spheres is limited and impractical in certain field measurement applications. In this study, a set of Bonner cylinders was fabricated based on a high-efficiency cylindrical 3He proportional counter. The cylindrical arrangement substantially improved the detection efficiency of the spectrometer system, but inevitably yielded an angular dependence on the detector responses. Using a series of calculations and measurements, this study presents a systematic comparison between Bonner spheres and cylinders in terms of their response functions, detection efficiencies, angular dependences and spectrum unfolding.
    Besides, neutron dosemeters used for radiation protection purpose are commonly calibrated with 252Cf neutron sources and are used in various workplaces. In this study, the effect of the neutron spectrum on the accuracy of dose measurements was investigated. A set of neutron spectra representing various neutron environments was selected to study the dose responses of a series of Bonner spheres, including standard and extended-range spheres. By comparing 252Cf-calibrated dose responses with reference values based on fluence-to-dose conversion coefficients, this study presents recommendations for neutron field characterization and appropriate correction factors for responses of conventional neutron dosemeters used in environments with high-energy neutrons.

    摘 要 i 目 錄 iii 圖 目 錄 v 表 目 錄 viii 第一章、緒論 1 第二章、延伸能量波那球中子能譜儀量測原理與波那圓柱中子能譜儀發展動機 4 第三章、計算機程式介紹 10 3.1 蒙地卡羅評估程式MCNPX 10 3.2 能譜展開程式UMG 12 第四章、全能域高靈敏度波那圓柱中子能譜儀之設計 16 4.1 聚乙烯(PE)組成之高靈敏度波那圓柱中子能譜儀 16 4.2 延伸能量高靈敏度波那圓柱中子能譜儀 19 4.3響應函數計算 29 4.3.1 波那球系統響應函數計算 31 4.3.2 波那圓柱系統響應函數計算-角度依存性探討 37 4.3.2.1 波那圓柱系統響應函數計算-平面單向射源 38 4.3.2.2 波那圓柱系統響應函數計算-均向射源 43 4.3.2.3 波那圓柱系統響應函數計算-點射源 47 4.3.3 波那圓柱系統響應函數計算-聚乙烯密度探討 49 4.3.4 波那圓柱系統響應函數計算-核截面數據處理物理模型探討 51 第五章、高靈敏度波那圓柱中子能譜儀在標準中子場之量測與模擬驗證 57 5.1 波那球系統之計數率量測與模擬驗證 61 5.2 以波那球量測結果進行能譜展開 65 5.3 波那圓柱系統之計數率量測與模擬驗證 66 5.4 以波那圓柱量測結果進行能譜展開 70 第六章、地表宇宙射線誘發中子能譜量測實驗 71 6.1宇宙射線誘發中子能譜來源 71 6.2實驗量測與模擬工具 73 6.2.1波那球與波那圓柱中子偵檢系統 73 6.2.2宇宙射線中子能譜計算 74 6.3地表宇宙射線誘發中子能譜量測結果 78 第七章、高能中子場偵檢器校正因子修正方法建立 91 7.1 中子場描述與實驗設計說明 93 7.2 以標準中子場進行校正方法驗證 98 7.3 不同尺寸波那球對修正因子之影響 100 7.4 待測能譜對修正因子之影響 101 第八章、結語與未來建議 107 參考文獻 110 附錄1、波那球中子能譜儀計算模型-MCNPX輸入檔 118 附錄2、高靈敏度波那圓柱中子能譜儀計算模型-MCNPX輸入檔 119 附錄3、高靈敏度波那圓柱中子能譜儀計算模型-MCNPX輸入檔 121 附錄4、高靈敏度波那圓柱中子能譜儀計算模型-MCNPX輸入檔 123 附錄5、響應函數表-商用波那球系統 125 附錄6、響應函數表-波那圓柱(平面單向射源) 129 附錄7、響應函數表-波那圓柱(均向射源) 133 附錄8、響應函數表-波那圓柱(點射源-固有響應函數) 137 附錄9、發表論文 141

    [1] The 2007 recommendations of the international commission on radiological protection. Oxford: Elsevier, (2007).
    [2] Bramblett, Richard L., Ronald I. Ewing, and T. W. Bonner. "A new type of neutron spectrometer." Nuclear Instruments and Methods 9.1 (1960): 1-12.
    [3] Jacobs, Gerard JH, and Rob LP van den Bosch. "Calibration measurements with the multisphere method and neutron spectrum analyses using the SAND-II program." Nuclear instruments and Methods 175.2 (1980): 483-489.
    [4] Awschalom, Miguel, and Robert S. Sanna. "Applications of Bonner sphere detectors in neutron field dosimetry." Radiat. Prot. Dosim 10.1-4 (1985): 89-101.
    [5] Hertel, Nolan E., and J. Wiley Davidson. "The response of Bonner spheres to neutrons from thermal energies to 17.3 MeV." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 238.2 (1985): 509-516.
    [6] Liu, J. C., et al. "Neutron spectral measurements at ORNL." Radiation protection dosimetry 30.3 (1990): 169-178.
    [7] Thomas, D. J., and A. V. Alevra. "Bonner sphere spectrometers—a critical review." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 476.1 (2002): 12-20.
    [8] M. Bricka, et al., Proceedings of a Symposium on Neutron Monitoring for Radiation Protection Purposes, IAEA, Vienna (1973):279.
    [9] Alevra, A. V., et al. "Experimental determination of the response of four Bonner sphere sets to monoenergetic neutrons." Radiation Protection Dosimetry 23.1-4 (1988): 293-296.
    [10] Aroua, A., et al. "Evaluation and test of the response matrix of a multisphere neutron spectrometer in a wide energy range Part I. Calibration." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 321.1 (1992): 298-304.
    [11] Thomas, P. M., K. G. Harrison, and M. C. Scott. "A multisphere neutron spectrometer using a central 3 He detector." Nuclear Instruments and Methods in Physics Research 224.1 (1984): 225-232.
    [12] Alevra, A. V., et al. "Experimental determination of the response of four Bonner sphere sets to monoenergetic neutrons (II)." Radiation protection dosimetry 40.2 (1992): 91-102.
    [13] Uwamino, Yoshitomo, Takashi Nakamura, and Akihisa Hara. "Two types of multi-moderator neutron spectrometers: gamma-ray insensitive type and high-efficiency type." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 239.2 (1985): 299-309.
    [14] Goldhagen, P., et al. "Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 476.1 (2002): 42-51.
    [15] Heaton, H. Thompson, and Robert Jacobs, eds. Proceedings of a Conference on Neutrons from Electron Medical Accelerators: proceedings of a conference held at the National Bureau of Standards, Gaithersburg, Maryland, April 9-10, 1979. No. 554. US Dept. of Commerce, National Bureau of Standards: for sale by the Supt. of Docs., US Govt. Print. Off., (1979).
    [16] Thomas, D. J., and A. V. Alevra. "Bonner sphere spectrometers—a critical review." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 476.1 (2002): 12-20.
    [17] Sweezy, J. E., et al. "Performance of multisphere spectrometry systems." Radiation Protection Dosimetry 78.4 (1998): 263-272.
    [18] A. Mitaroff, PhD Thesis, “Design, calibration and tests of an extended range Bonner sphere spectrometer,” CERN. (2002)
    [19] d'Errico, Francesco. "NCRP Report no. 144—Radiation protection for particle accelerator facilities. " National Council on Radiation Protection and Measurements (2003).
    [20] ICRP,. "Conversion Coefficients for Use in Radiological Protection against External Radiation." (1996).
    [21] Pelliccioni, M. "Overview of fluence-to-effective dose and fluence-to-ambient dose equivalent conversion coefficients for high energy radiation calculated using the FLUKA code." Radiation Protection Dosimetry 88.4 (2000): 279-297.
    [22] L. L. Johnson,Y. Lee,K. A. Lowry,S. G. Gorbics,“Recent advances in Bonner Sphere Neutron Spectrometry,” Presented at Theory and Practices in Radiation Protection and Shielding Symposium, Knoxville, TN (1987):83-84.
    [23] Pelowitz, D. B., et al. "MCNPX 2.7." A Extensions. Los Alamos National Laboratory (2008): 58.
    [24] Chadwick, M. B., et al. "Cross-section evaluations to 150 MeV for accelerator driven systems and implementation in MCNPX." Nuclear Science and Engineering 131.3 (1999): 293-328.
    [25] Hughes, H. Grady, Richard E. Prael, and Robert C. Little. "MCNPX-the LAHET/MCNP code merger." XTM-RN (U) 97 (1997).
    [26] Mashnik, S. G., et al. "CEM03. 03 and LAQGSM03. 03 event generators for the MCNP6, MCNPX, and MARS15 transport codes." arXiv preprint arXiv:0805.0751 (2008).
    [27] McKinney, Gregg W., et al. "MCNPX overview." Proceedings of the 2006 HSSW, FNAL, IL, LA-UR-06-6206 (2006).
    [28] Matzke, M., and K. Weise. "Neutron spectrum unfolding by the Monte Carlo method." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 234.2 (1985): 324-330.
    [29] Reginatto, Marcel, Paul Goldhagen, and Sonja Neumann. "Spectrum unfolding, sensitivity analysis and propagation of uncertainties with the maximum entropy deconvolution code MAXED." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 476.1 (2002): 242-246.
    [30] Reginatto, M., Goldhagen, P., “MAXED, A Computer Code for the Deconvolution of Multisphere Neutron Spectrometer Data Using the Maximum Entropy Method”, USDOE report EML595 (1998).
    [31] Reginatto, M., Goldhagen, P., “MAXED, A Computer Code for Maximum Entropy Deconvolution of Multisphere Neutron Spectrometer Data”, Health Physics 77 (1999).
    [32] Reginatto, M. “The “Few Channel” Unfolding Programs in the UMG Package” MXD_FC33, GRV_FC33, and IQU_FC33 for UMG Package 3.3 (2004).
    [33] Jaynes, Edwin T. "Information theory and statistical mechanics." Physical review 106.4 (1957): 620.
    [34] Jaynes, Edwin T. "Information theory and statistical mechanics. II." Physical review 108.2 (1957): 171.
    [35] Itoh, Shikoh, and Toshiharu Tsunoda. "Neutron spectra unfolding with maximum entropy and maximum likelihood." Journal of Nuclear Science and Technology 26.9 (1989): 833-843.
    [36] Zhigunov, V. P., T. B. Kostkina, and A. A. Spiridonov. "On estimating distributions with the maximum entropy principle." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 273.1 (1988): 362-370.
    [37] Corana, Angelo, et al. "Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm Corrigenda for this article is available here." ACM Transactions on Mathematical Software (TOMS) 13.3 (1987): 262-280.
    [38] Goffe, William L., Gary D. Ferrier, and John Rogers. "Global optimization of statistical functions with simulated annealing." Journal of Econometrics 60.1 (1994): 65-99.
    [39] Barros, S., et al. "Comparison of unfolding codes for neutron spectrometry with Bonner spheres." Radiation protection dosimetry 161.1-4 (2014): 46-52.
    [40] Alevra, A. V., M. Matzke, and B. R. L. Siebert. "Experiences from an international unfolding intercomparison with Bonner spheres." Proceedings of the 7th ASTM-EURATOM Symposium on Reactor Dosimetry, Strasbourg. 1990.
    [41] Burgett, Eric, Nolan E. Hertel, and Rebecca M. Howell. "Energy response and angular dependence of a Bonner sphere extension.", IEEE Transactions on Nuclear Science 56.3 (2009): 1325-1328.
    [42] https://zh.wikipedia.org/wiki/%E8%81%9A%E4%B9%99%E7%83%AF
    [43] Rühm, W., et al. "Comparison of Bonner sphere responses calculated by different Monte Carlo codes at energies between 1 MeV and 1 GeV–Potential impact on neutron dosimetry at energies higher than 20 MeV." Radiation Measurements 67 (2014): 24-34.
    [44] Böhm, J., et al. "ISO recommended reference radiations for the calibration and proficiency testing of dosemeters and dose rate meters used in radiation protection." Radiation protection dosimetry 86.2 (1999): 87-105.
    [45] Chen, Wei-Lin, Shiang-Huei Jiang, and Rong-Jiun Sheu. "Cosmic-ray neutron simulations and measurements in Taiwan." Radiation protection dosimetry 161.1-4 (2014): 303-306.
    [46] Liang, Cheng-Chih, Yen-Fu Chen, and Jeng-Wei Lin. "A real-time multichannel detector system for large-scale environmental radiation survey." Progress in nuclear science and technology 4 (2014): 682-686.
    [47] Chen, Yen-Fu, et al. "Measurement of natural background radiation intensity on a train." Radiation protection dosimetry (2010): 663-667.
    [48] Sheu, R. J., J. S. Lin, and S. H. Jiang. "A study of the cosmic-ray neutron field near interfaces." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 476.1 (2002): 74-79.
    [49] Sheu, R. J., and S. H. Jiang. "Cosmic-ray-induced neutron spectra and effective dose rates near air/ground and air/water interfaces in Taiwan." Health physics 84.1 (2003): 92-99.
    [50] United Nations. Scientific Committee on the Effects of Atomic Radiation. Effects of ionizing radiation: report to the General Assembly, with scientific annexes. Vol. 1. United Nations Publications, (2008).
    [51] Goldhagen, P., J. M. Clem, and J. W. Wilson. "The energy spectrum of cosmic-ray induced neutrons measured on an airplane over a wide range of altitude and latitude." Radiation protection dosimetry 110.1-4 (2004): 387-392.
    [52] Roesler, Stefan, Wolfgang Heinrich, and Hans Schraube. "Monte carlo calculation of the radiation field a aircraft altitudes." Radiation protection dosimetry 98.4 (2002): 367-388.
    [53] Clem, J. M., et al. "New calculations of the atmospheric cosmic radiation field—results for neutron spectra." Radiation protection dosimetry 110.1-4 (2004): 423-428.
    [54] Sato, Tatsuhiko, and Koji Niita. "Analytical functions to predict cosmic-ray neutron spectra in the atmosphere." Radiation research 166.3 (2006): 544-555.
    [55] Rühm, W., et al. "Spectral neutron flux oscillations of cosmic radiation on the Earth's surface." Journal of Geophysical Research: Space Physics (1978–2012) 117.A8 (2012).
    [56] Bottollier-Depois, J. F., Beck, P., Latocha, M., Mares, V., Matthia¨, D., Ru¨hm, W. and Wissmann, F. Comparison of codes assessing radiation exposure of aircraft crew due to galactic cosmic radiation. EURODOS Report 2012–03, European Radiation Dosimetry Group (2012).
    [57] Tang, Henry HK, and Kenneth P. Rodbell. "Single-event upsets in microelectronics: fundamental physics and issues." MRS bulletin 28.02 (2003): 111-116.
    [58] Baumann, Robert. "Impact of single-event upsets in deep-submicron silicon technology." MRS bulletin 28.02 (2003): 117-120.
    [59] O'Gorman, Timothy J., et al. "Field testing for cosmic ray soft errors in semiconductor memories." IBM Journal of Research and Development 40.1 (1996): 41-50.
    [60] Srinivasan, G. R. "Modeling the cosmic-ray-induced soft-error rate in integrated circuits: an overview." IBM Journal of Research and Development 40.1 (1996): 77-89.
    [61] Murley, Philip C., and G. R. Srinivasan. "Soft-error Monte Carlo modeling program, SEMM." IBM Journal of Research and Development 40.1 (1996): 109-118.
    [62] Tang, Henry HK. "Nuclear physics of cosmic ray interaction with semiconductor materials: particle-induced soft errors from a physicist's perspective." IBM journal of research and development 40.1 (1996): 91-108.
    [63] Gordon, M. S., et al. "Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground." IEEE Transactions on Nuclear Science 51.6 (2004): 3427-3434.
    [64] Ferrari, A., et al. "FLUKA: a multi-particle transport code, CERN 2005-10." INFN/TC 5 (2005).
    [65] Badhwar, GAUTAM D., and P. M. O'Neill. "Galactic cosmic radiation model and its applications." Advances in Space Research 17.2 (1996): 7-17.
    [66] Soberman, Robert K. "High-altitude cosmic-ray neutron intensity variations." Physical Review 102.5 (1956): 1399.
    [67] Hess, Wilmot N., et al. "Cosmic-ray neutron energy spectrum." Physical Review 116.2 (1959): 445.
    [68] Hess, W. N., E. H. Canfield, and R. E. Lingenfelter. "Cosmic‐ray neutron demography." Journal of Geophysical Research 66.3 (1961): 665-677.
    [69] Brooks, F. D., and H. Klein. "Neutron spectrometry—historical review and present status." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 476.1 (2002): 1-11.
    [70] Fassò, Alberto, James C. Liu, and Sayed H. Rokni. "Neutron spectra and dosimetric quantities outside typical concrete shielding of synchrotron facilities." (2012) ICRS-12.
    [71] Klett, Alfred, et al. "A neutron dose rate monitor for high energies." Radiation measurements 41 (2006): S279-S282.
    [72] Bedogni, Roberto. "Neutron spectrometry with Bonner spheres for area monitoring in particle accelerators." Radiation protection dosimetry 146.4 (2011): 383-394.
    [73] Naismith, O. F., and B. R. L. Siebert. "A database of neutron spectra, instrument response functions, and dosimetric conversion factors for radiation protection applications." Radiation protection dosimetry 70.1-4 (1997): 241-245.
    [74] Tanner, R. J., D. J. Thomas, and D. T. Bartlett. "Effect of the energy dependence of response of neutron personal dosemeters routinely used in the UK on the accuracy of dose estimation." National Radiological Protection Board, Report NRPB-W25 (2002).
    [75] Griffith, R. V., J. Palfalvi, and U. Madhvanath. "Compendium of neutron spectra and detector responses for radiation protection purposes." IAEA-TECDOC-403 (1990).
    [76] Aroua, A., et al. "Characterisation of the mixed neutron-gamma fields inside the Swiss nuclear power plants by different active systems." Radiation protection dosimetry 51.1 (1994): 17-25.
    [77] Amgarou, Khalil, et al. "Neutron spectrometry with a passive Bonner sphere system around a medical LINAC and evaluation of the associated unfolding uncertainties." IEEE Transactions on Nuclear Science 56.5 (2009): 2885-2895.
    [78] Agosteo, S., et al. "Shielding data for 100–250MeV proton accelerators: Attenuation of secondary radiation in thick iron and concrete/iron shields." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 266.15 (2008): 3406-3416.
    [79] Wiegel, B., et al. "Intercomparison of radiation protection devices in a high-energy stray neutron field, Part II: Bonner sphere spectrometry." Radiation Measurements 44.7 (2009): 660-672.
    [80] Chen, A. Y., Y. C. Lin, and R. J. Sheu. "A study of beam loss pattern and dose distribution around the TPS LINAC during beam commissioning." Progress in Nuclear Science and Technology 4 (2014): 160-164.
    [81] Hsu, YunCheng, Bo-Lun Lai, and Rong-Jiun Sheu. "Neutron yield and induced radioactivity: a study of 235-MeV proton and 3-GeV electron accelerators." Radiation protection dosimetry (2015): ncu375.
    [82] Moritz, Lutz E., et al. "Characteristics of the neutron field in the KEK counter hall." Health physics 58.4 (1990): 487-492.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE