研究生: |
周孟賢 Chou, Meng-Hsien |
---|---|
論文名稱: |
以電泳沉積法製備多壁奈米碳管複合電極於海水電池陰極材料的研究與應用 The study of MWCNTs composite material coated by EPD as cathode electrodes for seawater batteries |
指導教授: |
徐文光
Hsu, Wen-Kuang |
口試委員: |
徐文光
Hsu, Wen-Kuang 許景棟 Hsu, Ching-Tung 呂昇益 lu, Sheng-Yi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 51 |
中文關鍵詞: | 多壁奈米碳管 、海水電池 、電泳沉積法 、陰極 |
外文關鍵詞: | multi-walled carbon nanotubes, seawater batteries, electrophoretic deposition, cathode |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗利用電泳沉積法(electrophoretic deposition; EPD)在不鏽鋼網上沉積多壁奈米碳管,製備海水電池之陰極。將陽極鎂合金與陰極複合電極組裝成海水電池,對其進行材料分析與電化學實驗來評估其海水電池之效益。
實驗證實,多壁奈米碳管的沉積能有效地降低陰極之內電阻及電荷轉移之阻力,使海水電池之電壓輸出穩定,電流表現也較好。此外,在進行放電的同時,也不會排放出會汙染環境的物質。
In this experiment, multi-walled carbon nanotubes (MWCNTs) are coated onto stainless steel mesh by electrophoretic deposition and assemble a seawater battery cell with magnesium/aluminum alloy as anode and MWCNTs/stainless steel composite as cathode. We find that MWCNT coating reduces internal resistance and facilitates charge transfer at electrode/electrolyte interfaces, allowing seawater batteries to yield higher current and stable voltage output. Meanwhile, no pollutants are released into seawater while discharging.
1. Winter, M. and R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews, 2004. 104(10): p. 4245-4270.
2. Koontz, R., et al., Magnesium water-activated batteries, in Handbook of batteries. 2002, McGraw-Hill: New York. p. 17.1-17.27.
3. 宋玉苏 and 王树宗, 海水电池研究及应用. 鱼雷技术, 2004. 12(2): p. 4-8.
4. Wilcock, W.S.D. and P.C. Kauffman, Development of a seawater battery for deep-water applications. Journal of Power Sources, 1997. 66(1–2): p. 71-75.
5. Hasvold, Ø., et al., Sea-water battery for subsea control systems. Journal of Power Sources, 1997. 65(1–2): p. 253-261.
6. Hasvold, Ø., et al., CLIPPER: a long-range, autonomous underwater vehicle using magnesium fuel and oxygen from the sea. Journal of Power Sources, 2004. 136(2): p. 232-239.
7. 馮艷, 王日初, and 彭超群, 海水電池用鎂陽極的研究與應用. 中國有色金屬學報, 2011. 21(2): p. 259-268.
8. Iijima, S., HELICAL MICROTUBULES OF GRAPHITIC CARBON. Nature, 1991. 354(6348): p. 56-58.
9. Thostenson, E.T., Z. Ren, and T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, 2001. 61(13): p. 1899-1912.
10. Hassanien, A., et al., Geometrical structure and electronic properties of atomically resolved multiwall carbon nanotubes. Applied Physics Letters, 1999. 75(18): p. 2755-2757.
11. Lambin, P., Electronic structure of carbon nanotubes. Comptes Rendus Physique, 2003. 4(9): p. 1009-1019.
12. Lourie, O., D.M. Cox, and H.D. Wagner, Buckling and Collapse of Embedded Carbon Nanotubes. Physical Review Letters, 1998. 81(8): p. 1638-1641.
13. Yu, M.-F., T. Kowalewski, and R.S. Ruoff, Structural Analysis of Collapsed, and Twisted and Collapsed, Multiwalled Carbon Nanotubes by Atomic Force Microscopy. Physical Review Letters, 2001. 86(1): p. 87-90.
14. Yu, M.-F., et al., Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science, 2000. 287(5453): p. 637-640.
15. Treacy, M.M.J., T.W. Ebbesen, and J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 1996. 381(6584): p. 678-680.
16. M., M., Carbon Nanotubes: Science and Applications. Carbon Nanotubes: Science and Applications. 2005, Boca Raton, FL: CRC Press.
17. TheInternationalStainlessSteelForum. The Stainless Steel Family. 2014 [cited 2014 6/3]; Available from: http://www.worldstainless.org/Files/issf/non-image-files/PDF/TheStainlessSteelFamily.pdf.
18. Shaw, D.J., Introduction to Colloid and Surface Chemistry. 1992, Oxford: Butterworth-Heinemann.
19. Sciences, M.A. What is Zeta Potential? A brief description.; Available from: http://www.matecappliedsciences.com/mas/applications/WhatIsZetaPotential/.
20. Lewis, J.A., Colloidal Processing of Ceramics. Journal of the American Ceramic Society, 2000. 83(10): p. 2341-2359.
21. Hamaker, H.C., Formation of a deposit by electrophoresis. Transactions of the Faraday Society, 1940. 35(0): p. 279-287.
22. Boccaccini, A.R., et al., Electrophoretic deposition of carbon nanotubes. Carbon, 2006. 44(15): p. 3149-3160.
23. Du, C. and N. Pan, Supercapacitors using carbon nanotubes films by electrophoretic deposition. Journal of Power Sources, 2006. 160(2): p. 1487-1494.
24. Li, X., et al., A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries. Electrochemistry Communications, 2007. 9(4): p. 663-666.