簡易檢索 / 詳目顯示

研究生: 周孟賢
Chou, Meng-Hsien
論文名稱: 以電泳沉積法製備多壁奈米碳管複合電極於海水電池陰極材料的研究與應用
The study of MWCNTs composite material coated by EPD as cathode electrodes for seawater batteries
指導教授: 徐文光
Hsu, Wen-Kuang
口試委員: 徐文光
Hsu, Wen-Kuang
許景棟
Hsu, Ching-Tung
呂昇益
lu, Sheng-Yi
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 51
中文關鍵詞: 多壁奈米碳管海水電池電泳沉積法陰極
外文關鍵詞: multi-walled carbon nanotubes, seawater batteries, electrophoretic deposition, cathode
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用電泳沉積法(electrophoretic deposition; EPD)在不鏽鋼網上沉積多壁奈米碳管,製備海水電池之陰極。將陽極鎂合金與陰極複合電極組裝成海水電池,對其進行材料分析與電化學實驗來評估其海水電池之效益。
    實驗證實,多壁奈米碳管的沉積能有效地降低陰極之內電阻及電荷轉移之阻力,使海水電池之電壓輸出穩定,電流表現也較好。此外,在進行放電的同時,也不會排放出會汙染環境的物質。


    In this experiment, multi-walled carbon nanotubes (MWCNTs) are coated onto stainless steel mesh by electrophoretic deposition and assemble a seawater battery cell with magnesium/aluminum alloy as anode and MWCNTs/stainless steel composite as cathode. We find that MWCNT coating reduces internal resistance and facilitates charge transfer at electrode/electrolyte interfaces, allowing seawater batteries to yield higher current and stable voltage output. Meanwhile, no pollutants are released into seawater while discharging.

    摘要 i Abstract ii 致謝 iii 總目錄 iv 圖目錄 vi 表目錄 vii 一 文獻回顧 1 1-1海水電池 1 1-1-1電池簡介與海水電池的歷史 1 1-1-2海水電池的組成 5 1-2奈米碳管 6 1-2-1奈米碳管的結構 6 1-2-2奈米碳管的電性 8 1-2-3奈米碳管的機械性質 9 1-3不鏽鋼 9 1-3-1不鏽鋼的組成與特性 9 1-3-2不鏽鋼SAE鋼鐵分級 9 1-4膠體懸浮液與電泳沉積法 10 1-4-1膠體懸浮液 10 1-4-2電泳沉積法 16 二 研究動機 18 三 實驗步驟與流程 19 3-1實驗藥品與儀器 19 3-1-1實驗材料與藥品 19 3-1-2實驗儀器 19 3-1-3其他常用器具 20 3-2實驗流程與步驟 21 3-2-1實驗流程 21 3-2-2多壁奈米碳管/不鏽鋼網複合電極製備 22 3-2-3材料分析 25 3-2-4電化學量測 27 四 結果與討論 30 4-1奈米碳管/不鏽鋼網表面形貌與結構 30 4-2拉曼光譜分析 34 4-3 X繞射分析 36 4-4定電流放電測試 38 4-5電化學阻抗頻譜分析 40 4-6線性掃描伏安法 43 4-7 LED燈放電量測 45 4-8感應耦合電漿質譜儀分析 47 五 結論 49 六 參考資料 50

    1. Winter, M. and R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews, 2004. 104(10): p. 4245-4270.
    2. Koontz, R., et al., Magnesium water-activated batteries, in Handbook of batteries. 2002, McGraw-Hill: New York. p. 17.1-17.27.
    3. 宋玉苏 and 王树宗, 海水电池研究及应用. 鱼雷技术, 2004. 12(2): p. 4-8.
    4. Wilcock, W.S.D. and P.C. Kauffman, Development of a seawater battery for deep-water applications. Journal of Power Sources, 1997. 66(1–2): p. 71-75.
    5. Hasvold, Ø., et al., Sea-water battery for subsea control systems. Journal of Power Sources, 1997. 65(1–2): p. 253-261.
    6. Hasvold, Ø., et al., CLIPPER: a long-range, autonomous underwater vehicle using magnesium fuel and oxygen from the sea. Journal of Power Sources, 2004. 136(2): p. 232-239.
    7. 馮艷, 王日初, and 彭超群, 海水電池用鎂陽極的研究與應用. 中國有色金屬學報, 2011. 21(2): p. 259-268.
    8. Iijima, S., HELICAL MICROTUBULES OF GRAPHITIC CARBON. Nature, 1991. 354(6348): p. 56-58.
    9. Thostenson, E.T., Z. Ren, and T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, 2001. 61(13): p. 1899-1912.
    10. Hassanien, A., et al., Geometrical structure and electronic properties of atomically resolved multiwall carbon nanotubes. Applied Physics Letters, 1999. 75(18): p. 2755-2757.
    11. Lambin, P., Electronic structure of carbon nanotubes. Comptes Rendus Physique, 2003. 4(9): p. 1009-1019.
    12. Lourie, O., D.M. Cox, and H.D. Wagner, Buckling and Collapse of Embedded Carbon Nanotubes. Physical Review Letters, 1998. 81(8): p. 1638-1641.
    13. Yu, M.-F., T. Kowalewski, and R.S. Ruoff, Structural Analysis of Collapsed, and Twisted and Collapsed, Multiwalled Carbon Nanotubes by Atomic Force Microscopy. Physical Review Letters, 2001. 86(1): p. 87-90.
    14. Yu, M.-F., et al., Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load. Science, 2000. 287(5453): p. 637-640.
    15. Treacy, M.M.J., T.W. Ebbesen, and J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 1996. 381(6584): p. 678-680.
    16. M., M., Carbon Nanotubes: Science and Applications. Carbon Nanotubes: Science and Applications. 2005, Boca Raton, FL: CRC Press.
    17. TheInternationalStainlessSteelForum. The Stainless Steel Family. 2014 [cited 2014 6/3]; Available from: http://www.worldstainless.org/Files/issf/non-image-files/PDF/TheStainlessSteelFamily.pdf.
    18. Shaw, D.J., Introduction to Colloid and Surface Chemistry. 1992, Oxford: Butterworth-Heinemann.
    19. Sciences, M.A. What is Zeta Potential? A brief description.; Available from: http://www.matecappliedsciences.com/mas/applications/WhatIsZetaPotential/.
    20. Lewis, J.A., Colloidal Processing of Ceramics. Journal of the American Ceramic Society, 2000. 83(10): p. 2341-2359.
    21. Hamaker, H.C., Formation of a deposit by electrophoresis. Transactions of the Faraday Society, 1940. 35(0): p. 279-287.
    22. Boccaccini, A.R., et al., Electrophoretic deposition of carbon nanotubes. Carbon, 2006. 44(15): p. 3149-3160.
    23. Du, C. and N. Pan, Supercapacitors using carbon nanotubes films by electrophoretic deposition. Journal of Power Sources, 2006. 160(2): p. 1487-1494.
    24. Li, X., et al., A novel network composite cathode of LiFePO4/multiwalled carbon nanotubes with high rate capability for lithium ion batteries. Electrochemistry Communications, 2007. 9(4): p. 663-666.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE