簡易檢索 / 詳目顯示

研究生: 賀業翔
Yeh-Hsiang Ho
論文名稱: 永磁同步馬達驅動系統之無位置感測控制與噪音降低研究
POSITION SENSORLESS CONTROL AND ACOUSTIC NOISE REDUCTION STUDY FOR PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVE
指導教授: 廖聰明
Chang-Ming Liaw
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 151
中文關鍵詞: 永磁同步馬達無位置感測控制強健電流控制切換式整流器低頻切換隨機切換三階段激磁應電勢估測智慧型調控初始位置偵測單一方向啟動
外文關鍵詞: Permanent-magnet synchronous motor, position sensorless control, acoustic noise, robust current control, switch-mode rectifier, low-frequency switching, random switching, three-stage excitation, back-EMF estimation, intelligent tuning, initial rotor position estimation, unidirectional starting
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本論文旨在從事永磁同步馬達(Permanent magnet synchronous motor, PMSM)驅動系統之無位置感測控制及噪音降低研究。首先建構一以數位信號處理器為主之PMSM驅動系統,應用一強健電流控制及應電勢估測機構可得緊密之線圈電流波形追控特性,而同時估得之應電勢可供從事弦波式同步馬達之無位置感測控制。接著研製升壓型切換式整流器(Switch-mode rectifier, SMR),提供可調控之直流鏈電壓,增進馬達驅動系統之運轉性能。
    在降低低頻式SMR之振動及噪音研究方面,先由實驗中辨出主要電感之振動頻率。接著提出消除特定振動頻率及同時消除雙振動頻率之固定、交替及隨機之三階段激磁法。對於高頻SMR則採任意變化磁滯帶及任意變化切換頻率技巧之電流切換控制。各法均詳加介紹其原理及從事性能實測比較評定。
    最後在無位置感測控制方面,首先應用含有PMSM轉子絕對位置之估測應電勢從事施行弦波式同步馬達之無位置感測驅動控制之依據。以此方式所得之不理想直流無刷操控特性,再經所提智慧型調控予以改善,因而獲得良好之動態及穩態操控性能。此外,本論文也提出一初始位置偵測控制機構,並從事於無位置感測PMSM之單一方向啟動控制。
    關鍵詞:永磁同步馬達、無位置感測控制、強健電流控制、切換式整流器、低頻切換、隨機切換、三階段激磁、應電勢估測、智慧型調控、初始位置偵測、單一方向啟動。


    ABSTRACT
    This thesis is mainly concerned with the position sensorless control and the acoustic noise reduction studies for permanent-magnet synchronous motor (PMSM) drive. First, an experimental digital signal processor (DSP) based PMSM drive is established. A robust current control and back-EMF estimation scheme are proposed to yield close and robust current tracking performance. And the motor back electromagnetic force (EMF) can be observed and employed for performing the proposed sensorless control. Secondly, the suitable front-end switch-mode rectifiers (SMRs) are developed and utilized to establish boostable and well-regulated DC-link voltage for the followed PMSM inverter. In addition to the control and performance evaluation of the SMR-fed motor drive, the vibration and acoustic noise reductions for the SMR and the inverter-fed PMSM are also studied.
    In vibration and acoustic noise reductions of SMR, the important audible vibration modes of the inductor employed in the low-frequency (LF) SMR are first identified from measurements. Then the controls for eliminating one specific vibration mode and two vibration modes simultaneously via deterministic and stochastic three-stage excitation approaches are studied. As to the HF SMRs, a random switching frequency ramp-comparison current-controlled PWM (RC-CCPWM) scheme and a randomly band hysteresis CCPWM scheme are developed. Theoretical bases of all proposed control approaches are derived and their comparative performances are evaluated experimentally. On the other hand, the acoustic noise reduction for the PMSM drive via random PWM approach is also conducted.
    As to the sensorless control aspect, the motor back-EMF estimated using the proposed scheme, which contains the absolute rotor position information, is used to perform the position sensorless control of PMSM. The nonideal position estimation is then improved by an intelligent tuning scheme, wherein the estimated rotor position is tuned to yield minimum torque current component and thus better sensorless vector control performance. In addition, the motor can be automatically and quickly started under the preset torque current limit. Moreover, to achieve unidirectional starting under position sensorless control, a simple and practical initial rotor position estimation and starting scheme is further developed.
    Key words: Permanent-magnet synchronous motor, position sensorless control, acoustic noise, robust current control, switch-mode rectifier, low-frequency switching, random switching, three-stage excitation, back-EMF estimation, intelligent tuning, initial rotor position estimation, unidirectional starting.

    LIST OF CONTENTS ACKNOWLEDGEMENTS……………………………………………………….. I ABSTRACT……………………………………………………………………….. II LIST OF CONTENTS……………………………………………………………... III LIST OF FIGURES………………………………………………………………... VI LIST OF TABLES…………………………………………………………………. XII CHAPTER 1 INTRODUCTION…………………………………………... 1 CHAPTER 2 DSP-BASED PERMANENT MAGNET SYNCHRONOUS MOTOR DRIVE…………………………………………….. 7 2.1 Introduction………………………………………………….. 7 2.2 Structures of PMSMs………………………………………... 8 2.2.1 Rotor…………………………………………………... 8 2.2.2 Stator…………………………………………………... 10 2.3 Brushless DC Motor Operation of PMSM…………………... 11 2.4 Governing Equations of Sine-Wave PMSM………………… 11 2.5 Governing Equations of Square-Wave Type………………… 20 2.6 Estimation of Equivalent Circuit Parameters………………... 20 2.6.1 Back-EMF Constant…………………………………… 23 2.6.2 Winding Resistance and Inductance…………………... 23 2.7 DSP-Based PMSM Drive…………………………………… 29 2.7.1 Ratings of System Components……………………….. 29 2.7.2 Digital Control Practical Considerations…………… 32 2.7.3 DSP ADMC-401………………………………………. 34 2.7.4 Normalization of Digital Variable……………………... 35 2.8 Current-Controlled PWM Scheme…………………………... 35 2.8.1 System Configuration…………………………………. 35 2.8.2 Robust Current Control Scheme………………………. 37 2.8.3 Driving Performance…………………………………... 42 CHAPTER 3 FRONT-END SWITCH-MODE RECTIFIERS…………...... 51 3.1 Introduction………………………………………………….. 51 3.2 Classification of SMRs……………………………………… 51 3.3 LF AC-Switch Based SMR………………………………….. 54 3.3.1 Power Circuit………………………………………….. 54 3.3.2 Control Scheme……………........................................... 57 3.4 HF AC-Switch Based SMR…………………………………. 60 3.4.1 Upper Limit of KPi…………………………………….. 60 3.4.2 Simulated and Measured Results……………………… 63 3.5 Standard Boost-Type SMR………………………………….. 67 3.5.1 Power Circuit Components……………………………. 67 3.5.2 Design of Feedback Controller………………………... 70 3.5.3 Measured Results……………………………………… 70 CHAPTER 4 ACOUSTIC NOISE REDUCTION CONTROL OF FRONT-END SMRS………………………………………… 78 4.1 Introduction………………………………………………….. 78 4.2 Origins of Vibration and Acoustic Noise….………………… 78 4.3 Low-Frequency SMR with Auxiliary Narrow Pulse………... 80 4.3.1 Operation Priciple……………………………………... 80 4.3.2 Experimental results…………………………………… 84 4.4 Standard HF-SMR with Random Frequency RC-CCPWM Scheme…………………….………………………………… 91 4.4.1 High-Frequency SMR with RC-CCPWM Scheme……. 91 4.4.2 Experimental Results………………………………….. 96 4.5 High-Frequency SMR with Hyteresis CCPWM Scheme…… 99 4.5.1 Harmonic Spectral Analysis for Hysteresis CCPWM Scheme………………………………………………………. 99 4.5.2 Experimental Results………………………………….. 102 CHAPTER 5 POSITION SENSORLESS CONTROL FOR SINEWAVE PMSM……………………………………………………….. 108 5.1 Introduction………………………………………………….. 108 5.2 Comparative Survey of Existing Sensorless Control Methods 108 5.3 Starting and Initial Rotor Position Estimation…………… 116 5.3.1 Starting Methods………………………………………. 116 5.3.2 Rotor Initial Position Estimation……………………… 117 5.4 The Established Position Sensorless PMSM Drive and Problem Statements………………………………………….. 119 5.4.1 System Configuration…………………………………. 119 5.4.2 Methodology…………………………………………... 121 5.4.3 Speed Estimation Scheme……………………………... 122 5.4.4 The Proposed Robust Current Control and Back-EMF Estimation Scheme…………………………………………... 122 5.4.5 Error and Performance Analyses of the Proposed Back-EMF Estimation Scheme……………………………… 124 5.4.6 Experimental Performance Evaluation for the Developed Sensorless Controlled PMSM Drive….………... 127 CHAPTER 6 CONCLUSIONS…………………………………………….. 136 REFERENCES ……………………………………………………………….. 138 LIST OF FIGURES Fig. 2.1. Some rotor structures of PMSMs: (a) SPMSM; (b) inserted magnet type of IPMSM; (c) buried magnet type of IPMSM; (d) multi-layer magnet of IPMSM………………………………………………………. 9 Fig. 2.2. Outer-rotor and inner armature PMSM……………...…………………. 11 Fig. 2.3. Sine-wave type BDCM drive: (a) drive configuration; (b) winding currents; (c) winding current convention; (d) stator developed flux at time instant A; (e) stator developed flux at time instant B……………... 13 Fig. 2.4. An elementary PMSM: (a) configuration; (b) circuit connection………. 14 Fig. 2.5. The phasor diagram of a PMSM………………………………………... 18 Fig. 2.6. Idealized back-EMF and current waveforms of a square-wave PMSM... 21 Fig. 2.7. Simplified sine-wave PMSM models: (a) equivalent circuits; (b) per-phase armature winding model………………………....................... 22 Fig. 2.8. Parameter estimation for Y-connected motor with isolated neutral : (a) current excitation; (b) resulted flux distribution………………………... 24 Fig. 2.9. Parameters measurement for Y-connected motor with LCR meter: (a) equivalent circuit; (b) inductance; (c) resistance……………………….. 26 Fig. 2.10. Step-response estimation method for winding parameters: (a) circuit configuration; (b) measured current waveform………………………… 28 Fig. 2.11. The winding current response under different switching pattern………. 30 Fig. 2.12. Configuration of DSP-based PMSM drive……………………………... 31 Fig. 2.13. Some typical key issues of a PMSM drive……………………………... 32 Fig. 2.14. CCPWM scheme in: (a) abc-domain; (b) dq-domain…………………... 36 Fig. 2.15. The proposed current control scheme of a-phase winding: (a) control system configuration; (b) equivalent block diagram…………………… 38 Fig. 2.16. Measured phase-a winding currents and their commands by PI controller (RL = 21.6Ω) in abc-domain: (a) 500rpm; (b) 3000rpm……... 43 Fig. 2.17. Measured phase-a winding currents and their commands by the proposed robust controller with = 0.9 (RL = 21.6Ω) in abc-domain: (a) 500rpm; (b) 3000rpm……………………………………………….. 44 Fig. 2.18. Measured winding currents and commands due to a step speed command change (RL = 21.6Ω, = 2700rpm 3000rpm) in abc-domain: (a) PI controller ( = 0); (b) robust controller…………… 45 Fig. 2.19. Measured speed tracking and regulation responses in abc-domain by the PI controller and robust controller with different values of W: (a) RL = 21.6Ω, = 2700rpm→3000rpm; (b) =3000rpm, RL = 21.6Ω... 46 Fig. 2.20. Measured winding currents and their commands by PI controller (RL = 21.6Ω) in dq-domain: (a) 500rpm; (b) 3000rpm………………………... 47 Fig. 2.21. Measured winding currents and their commands due to a step speed command change (RL = 21.6Ω, = 2700rpm→3000rpm) in dq- domain:(a) PI controller (W= 0); (b) robust controller (W= 0.9)……...... 49 Fig. 2.22. Measured speed tracking and regulation responses in dq-domain by the PI controller and robust controller with different values of W: (a) RL = 21.6Ω, = 2700rpm→3000rpm; (b) =3000rpm, RL = 43.9Ω→21.6Ω………………………………………………………….. 50 Fig. 3.1. Seven typical SMR circuit topologies: (a) SMR-A; (b) SMR-B; (c) SMR-C; (d) SMR-D; (e) SMR-E; (f) SMR-S; (g) MSMR……………... 52 Fig. 3.2. AC-switch based SMRs: (a) circuit topology; (b) control block diagram and typical waveforms of a low-frequency switching control scheme…. 55 Fig. 3.3. The proposed voltage control scheme…………………………………... 58 Fig. 3.4. Measured DC output voltage Vd, voltage command and switching control signal vcont by the PI-controller with Gcv = 6.5+100/s: (a) due to step command change of 10V (270V→280V); (b) due to step load resistance change RL = 124Ω→115Ω…………………………………... 61 Fig. 3.5. Control block diagram of a ramp-comparison CCPWM high-frequency switching control scheme……………………………………………….. 62 Fig. 3.6. Simulated output voltage vd, input voltage vac, inductor current iL and its command of AC-switched based HF SMR with resistive load (RL = 78.5Ω)………………………………………………………………… 65 Fig. 3.7. Measured output voltage vd, input voltage vac, inductor current iL and its command of AC-switched based HF SMR with motor load (Vd = 300V, = 3000rpm, RL = 22Ω)……………………………………….. 66 Fig. 3.8. Circuit configuration of the standard SMR……………………………... 68 Fig. 3.9. Measured iL, its command (upper) and spectrum (lower) of iL of standard HF-SMR with resistive load (RL = 54.4Ω) at different switching frequencies: (a) fs = 30kHz; (b) fs = 20kHz; (c) fs = 10kHz; (d) fs = 5kHz…………………………………………………………….. 71 Fig. 3.10. Measured iL, its command (upper) and spectrum (lower) of iL of standard HF-SMR with motor load at different switching frequencies: (a) fs = 30kHz; (b) fs = 20kHz; (c) fs = 10kHz; (d) fs = 5kHz……………. 75 Fig. 4.1. Sources of noise and vibration in electromagnetic devices…………….. 79 Fig. 4.2. Key waveforms of three-stage excitation approach…………………….. 81 Fig. 4.3. Vibration reduction for LF-SMR: (a) proposed control scheme with two deterministically alternate narrow pulses for reducing two vibration modes; (b) PRBS generating circuit for randomly varying two different narrow pulses…………………………………………………. 83 Fig. 4.4. Measured results of LF-SMR (without narrow pulse) under PMSM load: (a) input voltage, current and switching signal; (b) inductor vibration; (c) spectrum of inductor vibration…………………………… 85 Fig. 4.5. Measured results of LF-SMR (without narrow pulse) under resistive load: (a) input voltage, current and switching signal; (b) inductor vibration; (c) spectrum of inductor vibration…………………………… 86 Fig. 4.6. Measured inductor vibration waveforms (upper) and spectra (lower) with narrow pulse under resistive load: (a) elimination of vibration mode l (2kHz); (b) elimination of vibration mode 2 (5.4kHz)…………. 88 Fig. 4.7. Measured inductor vibration waveforms (upper) and spectra (lower) of LF-SMR with narrow pulse under resistive load: (a) elimination of dual vibration modes using deterministic approach; (b) elimination of dual vibration modes using stochastic approach……………………………... 90 Fig. 4.8. Standard RC-CCPWM scheme…………………………………………. 93 Fig. 4.9. Acoustic noise reduction control for HF-SMR with RC-CCPWM: (a) random frequency triangular; (b) resulted current spectra……………… 94 Fig. 4.10. (a) Measured input voltage, inductor current and its command, inductor vibration waveform (middle) and spectrum (lower) of standard HF-SMR with standard robust RC-CCPWM (W=0.99, switching frequency = 5kHz) under resistive load ; (b) same as (a) with switching frequency = 3.5kHz~6.5kHz……………………………………………. 97 Fig. 4.11. (a) Measured input voltage, inductor current and its command, inductor vibration waveform (middle) and spectrum (lower) of standard HF-SMR with standard robust RC-CCPWM (W=0.99, switching frequency = 15kHz) under resistive load ; (b) same as (a) with switching frequency = 10kHz~20kHz………………………………….. 100 Fig. 4.12. Acoustic noise reduction control for HF-SMR with hysteresis CCPWM: (a) control scheme; (b) random signal modulated varying band; (c) current spectra corresponding to different bands; (d) resulted uniformly distributed current spectrum………………………………… 103 Fig. 4.13. (a) Measured input voltage, inductor current and its command, spectra of inductor current (middle) and inductor vibration (lower) of standard HF-SMR with robust hysteresis CCPWM (W=0.99, band = 2.5A) under resistive load; (b) same as (a) with band = 1.0A; (c) inductor vibration spectrum with band = 0.5A~1.5A……………………………………….. 105 Fig. 5.1. Typical configuration of a sensorless BDCM established using PMSM.. 110 Fig. 5.2. Classification of PMSM sensorless control methods…………………… 111 Fig. 5.3. Unconducted winding phase back-EMF measurement methods: (a) Equivalent circuit during the switches T2 and T3 being turned on; (b) the waveforms of terminal voltage va and neutral voltage vn…………… 114 Fig. 5.4. Conceptual diagram for illustrating the sensorless control based on third-order harmonic voltage: (a) air gap flux distribution of a BDCM; (b) ideal key waveforms………………………………………………… 115 Fig. 5.5. The proposed sensorless control scheme……………………………….. 120 Fig. 5.6. The proposed robust current controller and back-EMF estimation scheme…………………………………………………………………... 123 Fig. 5.7. Key waveforms of the proposed sensorless control scheme……………. 125 Fig. 5.8. Measured disturbance signals and Hall sensor signals Ha of a standard sine-wave BDCM drive at: (a) Vd = 250V, = 1500rpm, RL = 54.4Ω; (b) Vd = 250V, = 2500rpm, RL = 16.4Ω………………… 126 Fig. 5.9. The measured and the estimated speed with = 3.0A and 4.5A at (Vd = 250V, RL=54.4Ω, =1000rpm)……………………………………….. 128 Fig. 5.10. The measured and before and after making the commutation phase angle tuning at (Vd = 250V, = 1500rpm, RL = 54.4Ω)…………………………………………………………………... 130 Fig. 5.11. The measured during making the commutation phase angle tuning at (Vd = 250V, = 1500rpm, RL = 54.4Ω )…………………………… 131 Fig. 5.12. Measured speeds due to a step speed command change (1500rpm to 1700rpm) at (Vd = 250V, = 1500rpm RL = 54.4Ω ) of the developed sensorless PMSM drive before and after commutation phase angle tunings…………………………………………………………………... 132 Fig. 5.13. The measured speeds of the developed sensorless PMSM drive at (Vd = 250V, RL = 54.4Ω, = 3.0A): (a) = 0 to 100rpm; (b) = 0 to 50rpm…………………………………………………………………… 133 Fig. 5.14. Ramp speed command responses: (a) ramp speed command generator; (b) measured speeds of the developed sensorless PMSM drive under ramp speed commands with different ramping rates at (Vd = 250V, RL = 54.4Ω, = 3.0A, = 1200rpm); (c) measured current commands corresponding to (b)…………………………………………………. 134 LIST OF TABLES Table 3.1 Measured inductances and ESR (Rs) of different inductor cores at some frequencies………………………………………………………. 56 Table 3.2 The values of corresponding to different values of switching frequencies and inductors……………………………………………… 64 Table 3.3 Measured results of standard HF-SMR with resistive load (RL = 54.4Ω) at different switching frequencies……………………………... 73 Table 3.4 Measured results of standard HF-SMR with motor load at different switching frequency…………………………………………………… 77

    REFERENCES
    A. AC Motor and PMSM Drives
    [1] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors, Pergamon Press, Oxford, 1988.
    [2] D. C. Hanselman, Brushless Permanent-Magnet Motor Design, New York: McGraw Inc., 1994.
    [3] R. Krishan, Switch Reluctance Motor Drives: Analysis, Design and Application, New York, CRC Press, 2001.
    [4] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machine and Drive System, New York: The Institute of Electrical and Electronics Engineers, Inc., 2002.
    [5] B. K. Bose, Modern Power Electronics and AC Drives, New Jersey: Prentice Hall Inc., 2002.
    [6] R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control, New Jersey, Prentice Hall, 2001.
    [7] S. Morimoto, “Trend of permanent magnet synchronous machines,” IEEJ Trans. Electrical Elctron. Engineering, vol. 2, no. 2, pp. 101-108, 2007.
    [8] Y. Honda and Y. Takeda, “Technical evolution of permanent magnet synchronous motors for home appliances,” IEEJ Trans. Electrical Elctron. Engineering, vol. 2, no. 2, pp. 118-124, 2007.
    [9] E. Sato, “Permanent magnet synchronous motor drives for hybrid electric vehicles,” IEEJ Trans. Electrical Elctron. Engineering, vol. 2, no. 2, pp. 162-168, 2007.
    [10] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” Proc. IEEE IAS, vol. 2, 1999, pp. 840-845.

    B. Modeling and Parameter Estimation
    [11] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent magnet motor drives, part I: the permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Applicat., vol. 25, no. 2, pp. 265-273, 1989.
    [12] S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor parameters,” Proc. IEEE Ind. Applicat., vol. 1, 1997, pp. 29-34.
    [13] S. Moreau, R. Kahoul and J. P. Louis, “Parameters estimation of permanent magnet synchronous machine without adding extra-signal as input excitation,” Proc. IEEE Ind. Electron., vol. 1, 2004, pp. 371-376.
    [14] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter model for an interior PM synchronous machine,” IEEE Trans. Ind. Applicat., vol. 38, no. 3, pp. 645-650, 2002.
    [15] A. B. Proca, A. Keyhani, A. El-Antably, Lu Wenzhe and Min Dai, “Analytical model for permanent magnet motors with surface mounted magnets,” IEEE Trans. Energy Conversion, vol. 18, no. 3, pp. 386-391, 2003.
    [16] M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Electrical Electron. Engineering, vol. 2, no. 2, pp. 109-117, 2007.
    C. PWM/PAM, Current and Speed Controls
    [17] J. Holtz, “Pulsewidth modulation- a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
    [18] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
    [19] D. Y. Ohm and R. J. Oleksuk, “On practical digital current regulator design for PM synchronous motor drives,” Proc. IEEE APEC, vol. 1, 1998, pp. 56-63.
    [20] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motor,” Proc. IEE Electric Power Applicat., vol. 147, no. 6, 2000, pp. 503-512.
    [21] M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Applicat., vol. 36, no. 6, pp. 1531-1538, 2000.
    [22] D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM inverter with zero steady state error,” IEEE Trans. Power Electron., vol. 18, no. 4, pp. 814-822, 2003.
    [23] E. Levi, M. Jones and L. Xu, “A fast transient-current control strategy in sensorless vector-controlled permanent motor,” IEEE Trans. Power Electron., pp. 1508-1512, vol. 21, no. 5, 2006.
    [24] J. Dixon, M. Rodriguez and R. Huerta, “Position estimator and simplified current control strategy for brushless-DC motors, using DSP technology,” Proc. IEEE IECON, vol. 1, 2002, pp. 590-596.
    [25] S. Bolognani and M. Zigliotto, “Full-digital predictive hysteresis current control for switching losses minimisation in PMSM drives,” Proc. IEEE IPEMC, vol. 2, 2006, pp. 1-5.
    [26] P. Tang, G. Yang, M. Luo and Tiecai Li, “A current control scheme with tracking mode for PMSM,” Proc. IEEE ISSCAA, 2006, pp. 561-567.
    [27] L. Smith, M. Kadota, S. Doki and S. Okuma, “Inverter Modeling and Current Control System Design for Improving Current Response of PM Synchronous Motor in Overmodulation Range,” Proc. IEEE IECON, 2006, pp. 1275-1280.
    [28] S. Chakrabarti, T. M. Jahns and Lorenz, R. D., “Current regulation for surface permanent-magnet synchronous motor drives using integrated current sensors in low-side switches,” Proc. IEEE IAS, vol. 1, 2005, pp. 289-296.
    [29] X. Xiaofeng and G. Hirzinger, “Design of current control of fully integrated surface-mounted permanent magnet synchronous motor drive servo actuators,” Proc. IEEE Power and Electron. Applica., 2005, pp. 122-131.
    [30] S. Shinnaka, “A new norm based current control method for energy efficient/wide-speed-range drive of salient-pole permanent-magnet synchronous motors,” Proc. IEEE PESC, 2006, pp. 1-7.
    [31] P. Mattavelli, L. Tubiana and M. Zigliotto, “Torque-ripple reduction in PM synchronous motor drives using repetitive current control,” IEEE Trans. Power Electron., vol. 20, no. 6, pp. 1423-1431, 2005.
    [32] P. Antti and L. Jorma, “Torque ripple reduction in sensorless PMSM drives,” Proc. IEEE IECON, 2006, pp. 920-925.
    [33] P. Y. Jong, C. W. Lee, S. H. Choi and S. W. Kim, “Torque ripple minimization in permanent magnet synchronous servo drive,” Proc. IEEE Robotics, 2006, pp. 1-6.
    [34] J. Bastos, A. Monti and E. Santi, “Design and implementation of a nonlinear speed control for a PM synchronous motor using the synergetic approach to control theory,” Proc. IEEE PESC, vol. 5, 2004, pp. 3397-3402.
    [35] M. Kadjoudj, A. Golea, N. Golea and M. E. Benbouzid, “Speed sliding control of PMSM drives,” Proc. IEEE ISCIII, 2007, pp. 137-141.
    [36] K. Paponpen and M. Konghirun, “An improved sliding mode observer for speed sensorless vector control drive of PMSM,” Proc. IEEE IPEMC, vol. 2, 2006, pp. 1-5.
    [37] Y. A. R. Ibrahim, M. M. Abu-Elnaga and M. A. El-Sayad, “Robust speed control of PMSM drive system with lag time compensation,” Proc. IEEE ICEEC, 2004, pp. 823-829.
    [38] M. A. T. F. de Sousa, S. Caux and M. Fadel, “Design of robust controllers for PMSM drive fed with PWM inverter with inertia load variation,” Proc. IEEE Ind. Electron., vol. 1, 2006, pp. 217-222.
    [39] C. B. Butt, M. A. Hoque and M. A. Rahman, “Simplified fuzzy-logic-based MTPA speed control of IPMSM drive,” IEEE Trans. Ind. Applicat., vol. 40, no. 6, pp. 1529-1535, 2004.
    [40] T. S. Radwan and M. M. Gouda, “Intelligent Speed Control of Permanent Magnet Synchronous Motor Drive Based-on Neuro-Fuzzy Approach,” Proc. IEEE PEDS, vol. 1, 2005, pp. 602-606.
    [41] M. Nour, I. Aris, N. Mariun and S. Mahmoud, “Hybrid model reference adaptive speed control for vector controlled permanent magnet synchronous motor drive,” Proc. IEEE PEDS, vol. 1, 2006, pp. 618-623.
    [42] Y. A. R. Mohamed, “Adaptive Self-Tuning Speed Control for Permanent-Magnet Synchronous Motor Drive With Dead Time,” IEEE Trans. Energy Conversion, vol. 21, no. 4, pp. 855-862, 2006.
    [43] S. B. Lee, “Closed-Loop Estimation of Permanent Magnet Synchronous Motor Parameters by PI Controller Gain Tuning,” IEEE Trans. Energy Conversion, vol. 21, no. 5, pp. 863-870, 2006.
    D. Performance Improvement Control
    [44] H. C. Chen and C. M. Liaw, “Sensorless control via intelligent commutation tuning for brushless DC motor,” Proc. IEE Electric Power Applicat., vol. 146, no. 6, 1999, pp. 678-684.
    [45] C. C. Liaw, C. M. Liaw, H. C. Chang and M. S. Huang, “Robust current control and commutation tuning for an IPMSM drive,” Proc. IEEE APEC, vol. 2, 2003, pp. 1045-1051.
    [46] C. Mademlis, J. Xypteras and N. Margaris, “Loss minimization in surface permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Electorn., vol. 47, no. 1, pp. 115-122, 2000.
    [47] R. Monajemy and R. Krishnan, “Implementation strategies for concurrent flux weakening and torque control of the PM synchronous motor,” Proc. IEEE IAS, vol. 1, 1995, pp. 238-245.
    [48] J. X. Xu, S. K. Panda, Y. J. Pan, T. H. Lee and B. H. Lam, “A modular control scheme for PMSM speed control with pulsating torque minimization,” IEEE Trans. Ind. Electorn., vol. 51, no. 3, pp. 526-536, 2004.
    [49] W. Jingai, Z. Dongqi and A. Satake, “The torque research on concentrated winding brushless PM motor,” Proc. IEEE TENCON, vol. 3, 2002, pp. 2026-2029.
    [50] M. Lukaniszyn, M. Jagiela and R. Wrobel, “Optimization of permanent magnet shape for minimum cogging torque using a genetic algorithm,” IEEE Trans. Magnetics, vol. 40, no. 2, pp. 1228-1231, 2004.
    [51] C. S. Koh, and J. S. Seol, “New cogging-torque reduction method for brushless permanent magnet motors,” IEEE Trans. Magnetics, vol. 39, no. 6, pp. 3503-3506, 2003.
    [52] T. Schneider, T. Koch and A. Binder, ”Comparative analysis of limited field weakening capability of surface mounted permanent magnet machines,” Proc. IEE Electric Power Applicat., vol. 151, no. 1, 2004, pp. 76-82.
    [53] M. N. Uddin, T. S. Radwan and M. A. Rahman, “Performance of interior permanent magnet motor drive over wide speed range,” IEEE Trans. Energy Conversion, vol. 17, no. 1, pp. 79-84, 2002.
    [54] J. L. Chen, “Performance improvement study for a permanent magnet synchronous motor drive with variable-voltage DC link,” M. S. Thesis, Department of Electric Engineering, National Tsing Hua University, ROC, 2004.
    [55] K. Taniguchi, N. Kimura, Y. Takeda, S. Morimoto and M. Sanada, “A novel PAM inverter system for induction motor drive,” Proc. IEEE PEDS, vol. 1, 1995, pp. 129-134.
    [56] K. Taniguchi, S. Saegusa and T. Morizane, “PAM Inverter System with Soft-Switching PFC Converter suitable for PM Motor Drive,” Proc. IEEE PEDS, vol. 1, 2006, pp. 793-798.
    [57] F. D. Kieferndorf, M. Forster and T. A. Lipo, “Reduction of DC bus capacitor ripple current with PAM/PWM converter,” IEEE Trans. Ind. Applicat., vol. 40, no. 2, pp. 607-614, 2004.
    [58] B. Singh, B. P. Singh and M. Kumar, “PFC converter fed PM BLDC motor drive for air conditioning,” IE(I) Journal-EL, vol. 84, pp. 22-27, 2003.
    E. Front-End Switching Mode Rectifiers
    [59] B. Singh, B. N. Singh, A. Chandra, K. AI-Handdad, A. Panda and P. D. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Electron. Ind., vol. 50, no. 5, pp. 962-981, 2003.
    [60] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
    [61] W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” Proc. IEEE Southeastcon, 1998, pp. 348-353.
    [62] M. S. Dawande and G. K. Dubey, “Single phase switch mode rectifiers,” Proc. IEEE PEDES, vol. 2, 1996, pp. 637-643.
    [63] J. A. Pomilio and G. Spiazzi, “A low-inductance line-frequency commutated rectifier complying with EN 61000-3-2 standards,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 963-970, 2002.
    [64] L. Rossetto, G. Spiazzi and P. Tenti, “Boost PFC with 100Hz switching frequency providing output voltage stabilization and compliance with EMC standards,” IEEE Trans. Ind. Applicat., vol. 36, no. 1, pp. 188-193, 2000.
    [65] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
    [66] G. Moschopoulos and P. Jain, “Single-phase single-stage power-factor-corrected converter topologies,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 23-35, 2005.
    [67] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust ripple compensation and current waveform controls,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 560-566, 2004.
    F. Random Switching, Vibration and Acoustic Noise Reduction
    [68] T. G. Habetler and D. M. Divan, “Acoustic noise reduction in sinusoidal PWM drives using a randomly modulated carrier,” IEEE Trans. Power Electron., vol. 6, no. 3, pp. 356-363, 1991.
    [69] R. L. Kirlin, S. Kwok, S. Legowski and A. M. Trzynadlowski, “Power spectra of a PWM inverter with randomized pulse position,” IEEE Trans. Power Electron., vol. 9, no. 5, pp. 463-472, 1994.
    [70] Y. Asano, Y. Honda, H. Murakami, Y. Takeda and S Morimoto, “Novel noise improvement technique for a PMSM with concentrated winding,” Proc. IEEE PCC, vol. 2, 2002, pp. 460-465.
    [71] A. R. Rochebrune, G. Reyne and A. Foggia, “Prediction of vibration levels and resonant frequencies in static electrical apparatus,” Proc. IEEE IAS, vol. 1, 1990, pp. 122-127.
    [72] C. M. Liaw, Y. M. Lin, C. H. Wu and K. I. Hwu, “Analysis, design, and implementation of a random frequency PWM inverter,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 843-854, 2000.
    [73] B. J. Kang and C. M. Liaw, “Random hysteresis PWM inverter with robust spectrum shaping,” IEEE Trans. Aerospace and Electronic Systems, vol. 37, no. 2, pp. 619-629, 2001.
    [74] V. C. Valchey, D. M. Kovachey and A. P. Van den Bossche, “A practical approach to randomized pulse-width modulation,” Proc. IEEE IECON, 2005, pp. 514-518.
    [75] S. Yu and R. Tang, “Electromagnetic and mechanical characterizations of noise and vibration in permanent magnet synchronous machines,” IEEE Trans. Magnetics, vol. 42, no. 4, pp. 1335-1338, 2006.
    [76] M. Brackley and C. Pollock, “Analysis and reduction of acoustic noise from a brushless DC drive,” IEEE Trans. Ind. Applicat., vol. 36, no. 3, pp. 772-777, 2000.

    G. Position Sensorless Control
    [77] D. Montesinos, S. Galceran, F. Blaabjerg, A. Sudria and O. Gomis, “Sensorless control of PM synchronous motors and brushless DC motors. An overview and evaluation,” Proc. IEEE Power Electron. and Applica., 2005, pp. 10.
    [78] M. Schroedl, “Sensorless control of permanent-magnet synchronous machines: An overview,” Proc. IEEE EPE-PEMC, 2004.
    [79] N. Matsui, "Sensorless PM brushless DC motor drives", IEEE Trans. Ind. Electron., vol. 43, pp. 300-308, 1996.
    [80] D. Montesinos, S. Galceran, A. Sudria, O. Gomis and F. Blaabjerg, “Low cost sensorless control of permanent magnet motors - an overview and evaluation,” Proc. Electric Machines and Drives, 2005, pp. 1681-1688.
    [81] S. Ogaswawra and H. Akagi, “An approach to position sensorless drive for brushless DC motors,” IEEE Ind. Applica. Trans., vol. 27, pp. 928-933, 1991.
    [82] T. Furuhashi, S. Sangwongwanich, and S. Okuma, “A position-and-velocity sensorless control for brushless DC motors using an adaptive sliding mode observer,” IEEE Trans. lnd. Electron., vol. 39, pp. 89-95, 1992.
    [83] J. Holtz, "Speed estimation and sensorless control of AC drives", Proc. IEEE IECON, 1993, pp. 649-654.
    [84] S. Jul Ki, L. Jong Kun and L. Dong Choon, “Sensorless speed control of nonsalient permanent-magnet synchronous motor using rotor-position-tracking PI controller,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 399-405, 2006.
    [85] A. Consoli, G. Scarcella and A. Testa, “Industry application of zero-speed sensorless control techniques for PM synchronous motors,” IEEE Trans. Ind. Applicat., vol. 37, no. 2, pp. 513-521, 2001.
    [86] Z. Chen, M. Tomita, S. Doki and S. Okuma, “New adaptive sliding observers for position- and velocity-sensorless controls of brushless DC motors,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp.582-591, 2000.
    [87] M. Tomita, T. Senjyu, S. Doki and S. Okuma, “New sensorless control for brushless DC motors using disturbance observers and adaptive velocity estimations,” IEEE Trans. Ind. Electron., vol. 45, no. 2, pp. 274 -282, 1998.
    [88] A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for sensorless control of PMSM drives,” Proc. IEEE IECON, 2005, pp. 1474-1479.

    [89] S. Ichikawa, M. Tomita, S. Doki, and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006.
    [90] S. Zhe, Z. Rongxiang and W. Jing, “Sensorless control method of PMSM based on Extended Kalman Filter,” Proc. IEEE WCICA, vol. 2, 2006, pp. 8093-8097.
    [91] T. Senjyu, M. Tomita, S. Doki, and S. Okuma, “Sensorless vector control of brushless DC motors using disturbance observer,” Proc. IEEE PESC, vol. 2, 1995, pp. 772-777.
    [92] Ji-Hoon Jang, Jung-Ik Ha, M. Ohto, K. Ide and Seung-Ki Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Applica., vol. 40, no. 6, pp. 1595-1604, 2004.
    [93] H. C. Chen and C.M. Liaw, “Sensorless control via intelligent commutation tuning for brushless DC motor,” Proc. IEE., vol. 146, no. 6, 1999, pp. 678 -684.
    [94] M. E. Elbuluk, L. Tong, and I. Husain, “Neural-network-based model reference adaptive systems for high-performance motor drives and motion controls,” IEEE Trans. Ind. Applica., vol. 38, no. 3, pp. 879-885, 2002.
    [95] K. Sakamoto, Y. Iwaji, T. Endo and T. Takakura, “Position and speed sensorless control for PMSM drive using direct position error estimation,” Proc. IEEE IECON, vol. 3, 2001, pp. 1680-1685.
    [96] N. M. Babak, M. T. Farid and F. M. Sargo, “Back EMF estimation-based sensorless control of PMSM: robustness with respect to measurement errors and inverter irregularities,” IEEE Trans. Ind. Applica., vol. 43, no. 2, pp. 485-494, 2007.
    [97] F. Huang and D. Tien, “A neural network approach to position sensorless control of brushless DC motors,” Proc. IEEE IECON, vol. 2, 1996, pp. 1167-1170.
    [98] W. Chen and C. Xia, “Sensorless control of brushless DC motor based on fuzzy logic,” Proc. IEEE WCICA, vol. 2, 2005, pp. 6298-6302.
    [99] N. Bianchi, S. Bolognani, J. H. Jang and S. K. Sui, “Comparison of PM motor structures and sensorless control techniques for zero-speed rotor position detection,” Proc. IEEE PESC, 2006, pp. 1-7.
    [100] S. S. Liaw, “Development of DSP-based sensorless interior permanent magnet synchronous motor drive,” M. S. Thesis, National Tsing Hua University, ROC., 2003.
    [101] H. C. Chen, “Development of position sensorless brushless DC motor drives,” Ph. D. Dissertation, National Tsing Hua University, ROC., 2001.
    [102] D. Li, T. Suzuki, K. Sakamoto, Y. Notohara, T. Endo, C. Tanaka and T. Ando, “Sensorless control and PMSM drive system for compressor applications,” Proc. IEEE IPEMC, vol. 2, 2006, pp. 1-5.
    [103] J. Horvat, K. Jezernik and E. Urlep, “Pseudo sensorless control of PMSM,” Proc. IEEE IPEMC, 2006, pp. 1950-1955.
    [104] R. S. Miranda, C. B. Jacobina, E. M. Lima, A. C. Oliveira and M. B. R. Correa, “Parameter and speed estimation for implementing low speed sensorless PMSM drive system based on an algebraic method,” Proc. IEEE APEC, 2007, pp. 1406-1410.
    [105] R. S. Miranda, C. B. Jacobina, E. M. Lima, A. C. Oliveira and M. B. R. Correa, “Sensorless control of a PMSM synchronous motor at low speed,” Proc. IEEE IECON, 2006, pp. 5069-5074.
    [106] M. N. Eskander, O. M. Arafa and O. A. Mahgoub, “Sensorless control of PMSM and BDCM based on EMF Extraction and extended Kalman estimator,” Proc. IEEE Ind. Electron., 2006, pp. 2168-2175.
    [107] M. Rashed, P. F. Macconnell, A. F. Stronach and P. Acarnley, “Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1664-1675, 2007.
    [108] B. Nahid-Mobarakeh, F. Meibody-Tabar and F. M. Sargos, “Back EMF estimation-based sensorless control of PMSM: robustness with respect to measurement errors and inverter irregularities,” IEEE Trans. Ind. Applica., vol. 43, no. 2, pp. 485-494, 2007.
    [109] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006.
    [110] P. Degobert, G. Remy, J. Zeng, P. J. Barre and J. P. Hautier, “High performance control of the permanent magnet synchronous motor using self-tuning,” Proc. Southeastern, 2006, pp. 382-386.
    [111] M. A. Rahmman, M. N. Uddin and M. A. Abido, “An Artificial Neural Network Based Rotor Position Estimation for Sensorless Permanent Magnet Brushless DC Motor Drive,” Proc. IEEE IECON, 2006, pp. 649-654.
    [112] K. Paponpen and M. Konghirun, “An Improved Sliding Mode Observer for Speed Sensorless Vector Control Drive of PMSM,” Proc. IEEE IPEMC, vol. 2, 2006, pp. 1-5.
    H. Initial rotor position detection and starting method
    [113] Y. Yan and J.G. Zhu, “A survey of sensorless initial rotor position estimation schemes for permanent magnet synchronous motors”, Proc. AUPEC, 2004.
    [114] P. B. Schmidt, M. L. Gasperi, G. Ray and A. Wijenayake, “Initial rotor angle detection of a non-salient pole permanent magnet synchronous machine,” Proc. IEEE IAS, vol. 1, 1997, pp. 549-563.
    [115] A. Consoli, G. Scarcella and A. Testa, “Sensorless control of AC motors at zero speed,” Proc. IEEE ISIE, vol. 1, 1999, pp. 373-379.
    [116] M. J. Corley and R. D. Lorenz, “Rotor position and velocity estimation for a permanent magnet synchronous machine at standstill and high speeds,” Proc. IEEE Ind. Applicat., vol. 1, 1996, pp. 36-41.
    [117] J. Persson, M. Markovic and Y. Perriard, “A new standstill position detection technique for non-salient PMSM's using the magnetic anisotropy method (MAM),” Proc. IEEE IAS, vol. 1, 2005, pp. 238-244.
    [118] T. D. Batzel and K. Y. Lee, “Starting method for sensorless operation of slotless permanent magnet synchronous machines,” Proc. IEEE PESS, vol. 2, 1999, pp.1243-1247.
    [119] S. Kondo, A. Takahashi and T. Nishida, “Armature current locus based estimation method of rotor position of permanent magnet synchronous motor without mechanical sensor,” Proc. IEEE IAS, vol. 1, 1995, pp. 55-60.
    [120] N. Matsui and T. Takeshita, “A novel starting method of sensorless salient-pole brushless motor,” Proc. IEEE IAS, vol. 1, 1994, pp. 386-392.
    [121] J. Persson, M. Markovic and Y. Perriard, “A new standstill position detection technique for nonsalient permanent-magnet synchronous motors using the magnetic anisotropy method,” IEEE Trans. Magnetics, vol. 43, no. 2, pp. 554-560, 2007.
    [122] S. Shinnaka, “A New Current-Ratio-Oriented Simple Vector Control Method for Starting Up Sensorless Drive of Permanent-Magnet Synchronous Motors Feedback Control of Effective Reactive Currents Based on MIR Strategy,” Proc. IEEE Ind. Applica., vol. 4, 2006, pp. 2054-2061.
    [123] J. W. Lee, “A Novel Method of Estimating an Initial Magnetic Pole Position of a PMSM,” Proc. IEEE PESC, 2006, pp. 1-6.

    I. DSP-Based Digital Control and Digital Signal Processor
    [124] F. Nekoogar and G. Moriarty, Digital Control Using Digital Signal Processing. Prentice Hall PTR, New Jersey, 1999.
    [125] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic System, 4th ed. Prentice Hall Inc., 2002.
    [126] Z. Yu, “Variable frequency air-condition control solution based on C2000 DSP,” Texas Instruments Developer Conference India, 2005.
    [127] “Considerations for selecting a DSP processor,” Application Note, AN-393, 1994.
    [128] “Single-Chip, DSP-Based High Performance Motor Controller ADMC 401,” Analog Devices Inc., 2000.
    [129] “DSP Selection Guide,” Analog Devices Inc., 2000.
    [130] “ADSP-2100 Family User’s Manual,” Analog Devices Inc., 1995.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE