簡易檢索 / 詳目顯示

研究生: 陳郁琪
Chen, Yu-Qi
論文名稱: 通孔電鍍模擬與設計
Simulation of Through-Hole Plating: Modelling and Experiments
指導教授: 汪上曉
Wong, Shan-Hill
衛子健
Wei, Tzu-Chien
口試委員: 康嘉麟
Kang, Jia-Lin
張厚謙
Chang, Hou-Chien
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 92
中文關鍵詞: 通孔電鍍流場優化添加劑效應振盪流
外文關鍵詞: CFD, electrodeposition, through-hole plating, oscillating flow
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 通孔填充(Through-Hole Filling)是應用於製造高密度互連技術(High Density Interconnect, HDI)的印刷電路板當中的重要技術之一。本研究致力於研究高深寬比通孔電鍍沉積之行為,透過有限元素分析軟體COMSOL multiphysics建立通孔數值模型並進行參數設計。
    在本研究的通孔電鍍模型中,結合三級電流分布與Butler-Volmer equation和計算流體力學(Computational Fluid Dynamics, CFD),嘗試從三個角度探討如何改良通孔電鍍中普遍遇到的均勻性不佳的問題並尋找最佳化參數條件,分別是流場條件改良、添加劑效應以及振盪流。在流場條件中可調控的變因如噴嘴流量與循環流量以及擺放位置等,藉由流速的調整以促進通孔內部的流動解決質傳不佳的問題;而後,我們比較了有無加入添加劑對於電流密度分布的影響,從電流密度分布的變化可以看出添加抑制劑對於通孔內部沉積形貌的作用,達到抑制通孔孔口端因尖端效應導致的電流密度過高之現象;最後,在振盪系統中通孔板來回擺動使流場產生變化,藉由調節振盪的頻率與振幅,找出最佳化之參數組合並應用於通孔電鍍模型。


    The purpose of this paper is to investigate the behavior of the electrodeposition model and to discuss the parametric design by applying computer simulation methods. In this study, the modeling of COMSOL multiphysics, a commercial software, is explained in detail. The model combines the tertiary current distribution with the Butler-Volmer equation and computational fluid dynamics (CFD), and tries to explore how to improve and optimize the poor uniformity problem that is commonly encountered in through-hole plating from three perspectives. These are flow optimization, effect of additive and oscillation system, and they would be applied to simulate the parametric conditions to design the model.
    The parameters of flow optimization can be classified as nozzle flow and/or recycle flow. From the simulation outcomes, we can see that nozzle flow can help to promote convection inside the through-hole effectively and hence the problem of poor mass transfer could be tackled; while recycle flow mainly determines the degree of asymmetry between the left and right sides of the through-hole; if the distance between the two electrodes is adjusted, the electric field and the flow field can be modified concurrently. In the chapter of flow field optimization, these three aspects are evaluated by index value, and the proposed parameters of flow field are developed.
    In the chapter of effect of additive, the computational model including the effect of adsorption of inhibitor on the surface current density of electrode is established. The effect of adding inhibitor on the current density and the modification of the surface deposition profile can be seen by comparing the stable amount of inhibitor adsorption with the case without any inhibitor adsorption.
    Finally, in the oscillation system, the motion mode is arranged for the regular back and forth of the normal vector of the through-hole plate, and the adjustable condition parameters in this motion mode include period (or frequency) and amplitude. The condition parameter of period or amplitude has a better range of application, too large or too small value will make the deposition profile cannot achieve the best throwing power. These parameters are also evaluated by index value and the best combination of amplitude and period is suggested by modelling.

    摘要 i Abstract ii 誌謝 iv List of Contents v List of Figures vii List of Tables xi Chapter 1. Introduction 1 1.1 Background 1 1.2 Literature survey 3 1.3 Motive and scope 5 1.4 Organization 7 Chapter 2. Method 8 2.1 Apparatus, flow regime and simulation 8 2.2 Basic equation 11 2.3 Constant voltage vs. constant current 17 2.4 Thermal properties estimation 20 2.5 Additive model 24 2.6 Oscillating flow 26 2.7 Mesh method 28 Chapter 3. Experiments 32 3.1 Method of parameter determination 32 3.2 Experimental procedure 34 3.3 Analysis and result 36 Chapter 4. Flow optimization 42 4.1 Base case 42 4.2 Nozzle velocity difference 49 4.3 Recycle velocity difference 52 4.4 Distance between electrodes 60 4.5 Interaction effect 67 Chapter 5. Effect of additive 71 5.1 Effect on base case 71 5.2 Effect on nozzle velocity difference 75 5.3 Model validation 77 Chapter 6. Oscillating flow 78 Chapter 7. Conclusion 89 Chapter 8. Reference 91

    1. Kaanta, C. W., Bombardier, S. G., Cote, W. J., Hill, W. R., Kerszykowski, G., Landis, H. S., Poindexter, D. J., Pollard, C. W., Ross, G. H., & Ryan, J. G. (1991). Dual damascene: a ULSI wiring technology. 1991 Proceedings Eighth International IEEE VLSI Multilevel Interconnection Conference,
    2. Lin, G.-Y., Yan, J.-J., Yen, M.-Y., Dow, W.-P., & Huang, S.-M. (2013). Characterization of through-hole filling by copper electroplating using a tetrazolium salt inhibitor. Journal of the Electrochemical Society, 160(12), D3028.
    3. Kondo, K., Akolkar, R. N., Barkey, D. P., & Yokoi, M. (2014). Copper electrodeposition for nanofabrication of electronics devices (Vol. 171). Springer.
    4. Belov, I., Zanella, C., Edström, C., & Leisner, P. (2016). Finite element modeling of silver electrodeposition for evaluation of thickness distribution on complex geometries. Materials & design, 90, 693-703.
    5. Kessler, T., & Alkire, R. C. (1976). COPPER PLATING OF MULTILAYER PRINTED WIRING BOARDS.
    6. Pesco, A. M., & Cheh, H. Y. (1989). The Current Distribution within Plated Through‐Holes: I. The Effect of Electrolyte Flow Restriction during DC Electrolysis. Journal of the Electrochemical Society, 136(2), 399.
    7. Yue, B., Zhu, G., Wang, Y., Song, J., Chang, Z., Guo, N., & Xu, M. (2021). Uncertainty analysis of factors affecting coating thickness distribution during nickel electrodeposition. Journal of electroanalytical chemistry, 891, 115274.
    8. Nelissen, G., Weyns, G., Maciel, P., Deconinck, J., Vyver, O. V., & Deconinck, H. (2007). Numerical study of the influence of the anode position and the electrolyte flow on the deposition of copper on a wire. Electrochimica Acta, 52(23), 6584-6591.
    9. Bortels, L., Van den Bossche, B., & Deconinck, J. (1997). Analytical solution for the steady-state diffusion and migration. Application to the identification of Butler-Volmer electrode reaction parameters. Journal of electroanalytical chemistry, 422(1-2), 161-167.
    10. Expert, A. L. (December 17, 2020). https://www.armacostlighting.com/all-knowledge/constant-voltage-vs-constant-constant/
    11. Stricker, E., Adler, Z., Wainright, J., & Savinell, R. (2019). Diffusion coefficients of cuprous and cupric ions in electrolytes with high concentrations of bromide ions. Journal of Chemical & Engineering Data, 64(3), 1095-1100.
    12. Wang, Y., Zhu, W., Li, X., & Wang, F. (2016). Parameters analysis of TSV filling models of distinct chemical behaviours of additives. Electrochimica Acta, 221, 70-79.
    13. Thorsen, M. J., Sævik, S., & Larsen, C. M. (2016). Time domain simulation of vortex-induced vibrations in stationary and oscillating flows. Journal of Fluids and Structures, 61, 1-19.
    14. Liu, Y., & Glass, G. (2013). Effects of Mesh Density on Finite Element Analysis 2013-01-1375.
    15. Brett, C. M., Brett, O., & Electrochemistry, A. (1993). Principles, methods, and applications. Oxford University Press, New York. https://lib. ugent. be/en/catal og/rug01, 31, 3941.
    16. Milora, C. J., Henrickson, J. F., & Hahn, W. C. (1973). Diffusion coefficients and kinetic parameters in copper sulfate electrolytes and in copper fluoborate electrolytes containing organic addition agents. Journal of The Electrochemical Society, 120(4), 488.
    17. YOKOI, M., KoNIsHI, S., & HAYAsHI, T. (1983). Mechanism of the Electrodeposition and Dissolution of Copper in an Acid Copper Sulfate Bath I. The Behavior of Intermediate, Cu+. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 51(3), 310-316.
    18. Lanzi, O., & Landau, U. (1990). Terminal effect at a resistive electrode under tafel kinetics. Journal of The Electrochemical Society, 137(4), 1139.

    QR CODE