研究生: |
柯嘉昀 Ko, Chia-Yun |
---|---|
論文名稱: |
土瓶草的量產與阿拉伯芥雙功能核酸酶之特性分析 Mass production of Cephalotus follicularis and functional characterization of the Arabidopsis bifunctional nuclease 2 |
指導教授: |
林彩雲
Lin, Tsai-Yun 蕭介夫 Shaw, Jei-Fu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 88 |
中文關鍵詞: | 雙功能核苷酸酶 、植物細胞程式凋亡 、植物組織培養 、土瓶草 、啟動子 |
外文關鍵詞: | micropropagation, plant tissue cluture, bifunctional nuclease, mismatch-specific endonuclease, plant programmed cell death, BFN |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
觀察繼代芽體對不同濃度比例培養基的生長狀況,建立土瓶草大量的微體增殖流程。從土瓶草的根誘導再生初代芽體並以60天為繼代培養週期。在液體培養基加入或不加入植物生長素和細胞分裂素,測試芽體對不同濃度比例培養基的喜好,我們的實驗證實芽體快速增生於含有1/5 和1/10的巨量元素及全量的微量元素的固體培養基。液體培養基的巨量和微量元素成分與固體培養基相同,但是加入植物生長素和細胞分裂素的濃度或是不加入植物賀爾蒙來測試芽體增生速率。實驗證明芽體能有效率增生於液體培養基中含有5 □M 植物生長素和1 □M 細胞分裂素或是不含任何的植物賀爾蒙。液體培養基較固體培養基能在相同的培養時間內得到更多的培植體。培植體培養於1/5 MMS固體培養基不含植物賀爾蒙,能有效率的促進根系的生長。利用液體培養的方法,在四個月內,即可得到大量健康的土瓶草組織培養苗。在溫室中,經過馴化的土瓶草苗能夠全部存活。
阿拉伯芥基因At1g68290可轉譯成雙功能核苷酸酶 (AtBFN2),本實驗將C端帶有組胺酸標籤 (his-tag) 的雙功能核苷酸酶之融合蛋白質轉殖於阿拉伯芥植物大量表現並純化。藉由液相層析管柱質譜儀與N端氨基酸訂序法,確認表現的蛋白質為雙功能核苷酸酶。雙功能核苷酸酶具有分解核醣核酸,單股去氧核醣核酸,雙股去氧核醣核酸及質體的能力;於受質中,雙功能核苷酸酶偏愛分解核醣核酸及單股去氧核醣核酸。在酸鹼值為中性時,雙功能核苷酸酶對單股去氧核醣核酸的分解能力 (361.7 U / mg ) 遠大於對雙股去氧核醣核酸者 (14.1 U / mg)。雙功能核苷酸酶能夠偵測單一對核苷酸之錯誤配對或是因插入或移除核苷酸產生的無配對區域,所以雙功能核苷酸酶為具專一性偵測核苷酸錯誤配對的內切型核苷酸酵素。
分析雙功能核苷酸酶的啟動子調控GUS基因的表現,藉由GUS組織化學染色法偵測,發現雙功能核苷酸酶的啟動子表現於展開的子葉、根尖、側根、分化的維管束、老化的葉子及花器。大量的GUS活性表現於果莢的離層區域及破裂的種皮,推測雙功能核苷酸酶參與植物細胞程式凋亡的過程。在BFN2-RNAi轉殖植物的試驗中,發現降低雙功能核苷酸酶的表現量會影響延緩子葉展開、降低花青素的累積。
Abstract
To establish a mass micropropagation procedure for Cephalotus follicularis, the effects of varying the strengths of solid Murashige Skoog (MS) medium were investigated using subcultured shoot explants. After a 60 day primary culture from root mass, the regenerated shoot explants were subcultured every 60 day in solid MS medium. To facilitate shoot proliferation, liquid MS (LMS) medium was applied with or without exogenous auxin and cytokinin. Our results demonstrate that shoot proliferation and survival of C. follicularis is most effective in modified MS (MMS) medium containing 1/5- or 1/10-strength macronutrients and full strength micronutrients. Successful shoot proliferation and development of C. follicularis explants were obtained in 1/5 or 1/10 modified liquid MS medium (MLMS) without auxin and cytokinin, or with addition of 5 □M IAA /1 □M BA for 45 day. The liquid medium consistently produced more explants than the solid medium and shortened the culturing time. Plantlets cultured in hormone free 1/5 MMS medium developed greater root systems. Using the liquid culture we established, vigorous plants with extensive roots were obtained within four months. Plant survival in the greenhouse reached 100%.
The Arabidopsis thaliana gene At1g68290 was expressed as a C-terminal hexahistidine fusion protein, affinity purified from transgenic plants and its identity confirmed by liquid chromatography-mass spectrometry and automatic Edman degradation. Purified AtBFN2 digested RNA, single-stranded DNA, double-stranded homoduplex DNA and circular plasmids, with a substrate preference for single-stranded DNA and RNA. The AtBFN2 activity towards ssDNA (361.7 U/mg) is greater than its dsDNase activity (14.1 U/mg) at neutral pH, and it cleaves mismatch regions in heteroduplex DNA containing single base pair mismatches or insertion/deletion bases, as effectively as it cleaves ssDNA, and more effectively than homoduplex DNA without mismatches. We conclude that AtBFN2 is a mismatch-specific endonuclease.
The AtBFN2 expression was detected in expanding cotyledons, root tips and lateral roots, differentiating xylems, senescent leaves and floral organs, using GUS gene driven by a 1.2 kb AtBFN2 promoter. Strong GUS activity was observed in the abscission zone of siliques and in the ruptured testa, suggesting that AtBFN2 may be involved in plant programmed cell death. A decrease in AtBFN2 activity was accompanied with the delayed cotyledon expansion and reduced anthocyanin accumulation in the BFN2-RNAi transgenic plants.
References
Adams RM, Koenigsberg SS, Langhans RW. 1979. In vitro propagation of Cephalotus follicularis (Australian pitcher plant). HortScience 14:512-513.
Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF. 2006. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1: 2320-2325.
Aoyagi S, Sugiyama M, Fukuda H. 1998. BEN1 and ZEN1 cDNAs encoding S1-type DNases that are associated with programmed cell death in plants. Febs Letters 429: 134-138.
Bleecker AB, Patterson SE. 1997. Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 9: 1169-1179.
Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254.
Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R. 2004. A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40: 143-150.
Culham A, Gornall RJ. 1994. The taxonomic significance of naphthoquinones in the Droseraceae. Biochem. Systematics Ecol 22:507-515.
Ecker JR, Davis RW. 1987. Plant defense genes are regulated by ethylene. Proc Natl Acad Sc USA 84: 5202-5206.
Ellis RE, Yuan JY, Horvitz HR. 1991. Mechanisms and functions of cell death. Annu Rev Cell Biol 7: 663-698.
Farage-Barhom S, Burd S, Sonego L, Perl-Treves R, Lers A. 2008. Expression analysis of the BFN1 nuclease gene promoter during senescence, abscission, and programmed cell death-related processes. J Exp Bot 59: 3247-3258.
Fujimoto M, Kuninaka A, Yoshino H. 1974a. Studies on a nuclease from Penicillium citrinum .2. Identity of phosphodiesterase and phosphomonoesterase activities with nuclease P1 (a nuclease from Penicillium citrinum). Agric Biol Chem 38: 785-790.
Fujimoto M, Kuninaka A, Yoshino H. 1974b. Studies on a nuclease from Penicillium citrinum .3. Substrate-specificity of nuclease P1. Agric Biol Chem 38: 1555-1561.
Gan S, Amasino RM. 1997. Making Sense of Senescence (Molecular Genetic Regulation and Manipulation of Leaf Senescence). Plant Physiol 113: 313-319.
Gomez-Mena C, de Folter S, Costa MM, Angenent GC, Sablowski R. 2005. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132: 429-438.
Goncalves S, Escapa AL, Grevenstuk T, Romano A. 2008. An efficient in vitro propagation protocol for Pinguicula lusitanica, a rare insectivorous plant. Plant Cell Tissue Organ Cult 95:239-243.
Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S. 2003. Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164: 731-740.
Guo Y, Gan, S. 2005. Leaf senescence: signals, execution, and regulation. Curr Top Dev Biol 71: 83-112.
Hanfrey C, Fife M, BuchananWollaston V. 1996. Leaf senescence in Brassica napus: Expression of genes encoding pathogenesis-related proteins. Plant Mol Biol 30: 597-609.
Hilary JR. 2005. Cell death and organ development in plants. Curr Top Dev Biol 71: 225-261.
Hook ILI. 2001. Naphthoquinone contents of in vitro cultured plants and cell suspensions of Dionaea muscipula and Drosera species. Plant Cell Tissue Organ Cult 67:281-285.
Ito J, Fukuda H. 2002. ZEN1 is a key enzyme in the degradation of nuclear DNA during programmed cell death of tracheary elements. Plant Cell 14: 3201-3211.
Jang GW, Kim KS, Park RD. 2003. Micropropagation of Venus fly trap by shoot culture. Plant Cell Tissue Organ Cult 72:95-98.
Keighery GJ 1979. Chromosome Counts in Cephalotus (Cephalotaceae). Plant Systematics Evol 133:103-104.
Kuninaka A, Fujimoto M, Yoshino H. 1975. Existence of 16 2'-5' dinucleotides in nuclease P1 (Penicillium nuclease) digest of technical grade yeast RNA. Agric Biol Chem 39: 603-610.
Latha PG, Seeni S. 1994. Multiplication of the endangered Indian pitcher plant (Nepenthes khasiana) through enhanced axillary branching in-vitro. Plant Cell Tissue Organ Cult 38:69-71.
Lee LC, Chen YT, Yen CC, Chiang TC, Tang SJ, Lee GC, Shaw JF. 2007. Altering the substrate specificity of Candida rugosa LIP4 by engineering the substrate-binding sites. J Agric Food Chem 55: 5103-5108.
Linsmeier EM, Skoog F. 1965. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant 18:100-127.
Lowrie A. 1998. Carnivorous Plant of Australia Vol 3. University of Western Australia Press, Nedlands, Western Australia.
Mittler R, Lam E. 1995. Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death. Plant Cell 7: 1951-1962.
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15: 473-497.
Naik AK, Raghavan SC. 2008. P1 nuclease cleavage is dependent on length of the mismatches in DNA. DNA Repair 7: 1384-1391.
Oleson AE, Sasakuma M. 1980. S1 nuclease of Aspergillus oryzae: a glycoprotein with an associated nucleotidase activity. Arch Biochem Biophys 204: 361-370.
Oleykowski CA, Mullins CRB, Godwin AK, Yeung AT. 1998. Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26: 4597-4602.
Pennell RI, Lamb C. 1997. Programmed Cell Death in Plants. Plant Cell 9: 1157-1168.
Perez-Amador MA, Abler ML, De Rocher EJ, Thompson DM, van Hoof A, LeBrasseur ND, Lers A, Green PJ. 2000. Identification of BFN1, a bifunctional nuclease induced during leaf and stem senescence in Arabidopsis. Plant Physiol 122: 169-179.
Raghavan C, Naredo MEB, Wang HH, Atienza G, Liu B, Qiu FL, McNally KL, Leung H. 2007. Rapid method for detecting SNPs on agarose gels and its application in candidate gene mapping. Mol Breeding 19: 87-101.
Romier C, Dominguez R, Lahm A, Dahl O, Suck D. 1998. Recognition of single-stranded DNA by nuclease P1: High resolution crystal structures of complexes with substrate analogs. Proteins:Struct Funct Bioinf 32: 414-424.
Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D. 2005. A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23: 75-81.
Sottosanto JB, Saranga Y, Blumwald E. 2007. Impact of AtNHX1, a vacuolar Na+/H+ antiporter, upon gene expression during short- and long-term salt stress in Arabidopsis thaliana. BMC Plant Biol 7: 18.
Sugiyama M, Ito J, Aoyagi S, Fukuda H. 2000. Endonucleases. Plant Mol Biol 44: 387-397.
Suzuki T, Eiguchi M, Kumamaru T, Satoh H, Matsusaka H, Moriguchi K, Nagato Y, Kurata N. 2008. MNU-induced mutant pools and high performance TILLING enable finding of any gene mutation in rice. Mol Genet Genomics 279: 213-223.
Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E. 2008. The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36: D1009-1014.
Till BJ, Burtner C, Comai L, Henikoff S. 2004. Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32: 2632-2641.
Teng WL. 1999. Source, etiolation and orientation of explants affect in vitro regeneration of Venus fly trap (Dionaea muscipula). Plant Cell Rpt 18:363-368.
Triques K, Sturbois B, Gallais S, Dalmais M, Chauvin S, Clepet C, Aubourg S, Rameau C, Caboche M, Bendahmane A. 2007. Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea. Plant J 51: 1116-1125.
Vallee BL, Auld DS. 1993. New perspective on zinc biochemistry - cocatalytic sites in multi-zinc enzymes. Biochemistry 32: 6493-6500.
Vogt VM. 1980. Purification and properties of S1 nuclease from Aspergillus. Methods Enzymol 65: 248-255.
Volbeda A, Lahm A, Sakiyama F, Suck D. 1991. Crystal structure of Penicillium citrinum P1 nuclease at 2.8 A resolution. Embo Journal 10: 1607-1618.
Xing D, Ni S, Kennedy MA, Li QQ. 2009. Identification of a plant-specific Zn2+-sensitive ribonuclease activity. Planta 230: 819-825.
Yang B, Wen X, Kodali NS, Oleykowski CA, Miller CG, Kulinski J, Besack D, Yeung JA, Kowalski D, Yeung AT. 2000. Purification, cloning, and characterization of the CEL I nuclease. Biochemistry 39: 3533-3541.
Yen Y, Green PJ. 1991. Identification and properties of the major ribonucleases of Arabidopsis thaliana. Plant Physiol 97: 1487-1493.
Yu HJ, Hogan P, Sundaresan V. 2005. Analysis of the female gametophyte transcriptome of Arabidopsis by comparative expression profiling. Plant Physiol 139: 1853-1869.