研究生: |
羅景仁 Luo, Jing Ren |
---|---|
論文名稱: |
多層次孔洞MFI含鈦沸石在丙烯選擇性氧化反應之研究 Hierarchical titanium-containing MFI zeolite for the selective oxidation of propylene |
指導教授: |
楊家銘
Yang, Chia-Min |
口試委員: |
黃暄益
Huang, Hsuan-Yi 林昇佃 Lin, Shawn D. |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 86 |
中文關鍵詞: | 沸石 、丙烯選擇性氧化 |
外文關鍵詞: | zeolite |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用以中央疏水段串連兩端四級銨之新型態的tri-block結構導向試劑N3-(PO)5-N3Br6,成功合成出具多層次孔洞的沸石TS-1與silicalite-1,更利用後修飾法將Ti原子修飾於silicalite-1表面以應用於丙烯選擇性氧化反應。與傳統沸石相比,以tri-block SDA合成的沸石具有高表面積及多層次孔洞特性。在合成TS-1部分,我們以經過陰離子交換為氫氧基的結構導向試劑N3-(PO)5-N3(OH)6來合成沸石,所得樣品以四配位鈦為主,但其形貌為許多顆粒聚集成長呈不規則狀。另外,我們將合成態的silicalite-1透過酸洗步驟,選擇性移除結構導向試劑疏水段部分以曝露出沸石奈米層表面,接著再進一步以titanocene dichloride進行修飾而使silicalite-1表面帶有接近全為四配位鈦的物種,能製備出含幾乎純四配位鈦的沸石材料。我們把這些含鈦的多層次孔洞沸石附載金奈米粒子,應用來催化丙烯選擇性氧化反應。結果發現不論是直接合成的多層次孔洞TS-1或者表面修飾Ti的silicalite-1,其轉化率雖然並沒有大幅改善,但比較傳統TPAOH合成的TS-1在500分鐘以內有較佳催化穩定性。
In the research, triblock structure directing agent (SDA) N3-(PO)5-N3Br6 with hydrophobic middle part and hydrophilic ends was applied to the synthesis of hierarchical silicalite-1 and TS-1. In addition, Ti species were grafted on the surface of silicalite-1 for propylene epoxidation. Compared with conventional MFI zeolites, materials obtained by using tri-block as SDA featured high BET surface area and hierarchical structure. In the synthesis of hierarchical TS-1 prepared by using the SDA N3-(PO)5-N3OH6, the resulted material showed considerable amount of tetrahedral Ti species, but the morphology was irregular. After selectively removing the hydrophobic part of SDA by acid treatment the hierarchical silicalite-1 could exposed the external surface of nanosheets, which was grafted with titanocene dichloride to form tetrahedrally coordinated species . We deposited gold nanoparticles onto the two hierarchical titanium-containing zeolites and used them as catalysts for propylene epoxidation. Although both samples prepared by post-grafting and direct hydrothermal synthesis did not improve the conversion of propylene compared to conventional zeolite, they exhibited greater catalytic stability in 500 minutes.
1. Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angew. Chem., Int. Ed. 1999, 38, 56-77.
2. Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Mater. (Weinheim, Ger.) 2000, 12, 1403-1419.
3. Ch. Baerlocher, L. B. M. a. D. H. O., Atlas of Zeolite Framework Types. 6th
revised edition ed.; 2007.
4. Imelik, B. N., Y.; Vedrine, J. C.; Coudurier, G.; Praliaud, H., Catalysis by zeolite. 1980.
5. Barrer, R. M. J. Chem. Soc. 1948, 2158-63.
6. Bhatia, S., Zeolite catalysis principles and application. CRC Press: Florida, 1990.
7. Morris, R. E. J. Mater. Chem. 2005, 15, 931-938.
8. McCusker, L. B.; Liebau, F.; Engelhardt, G. Pure Appl. Chem. 2001, 73, 381-394.
9. Wei, J. J. Catal. 1982, 76, 433-9.
10. Kim, J.; Choi, M.; Ryoo, R. J. Catal. 2010, 269, 219-228.
11. Čejka, J. i., H. v. Bekkum, Zeolites and ordered mesoporous materials:
progress and prospects : the 1st FEZA School on Zeolites. 2005.
12. Auerbach, S. M. K. A. C., P. K. Dutta, Handbook of Zeolite Science and
Technology. 2003.
13. van Donk, S.; Bitter, J. H.; Verberckmoes, A.; Bersluijs, H.; Broersma, A.; de Jong, K. P. Angew. Chem., Int. Ed. 2005, 44, 1360-1363.
14. Corma, A. J. Catal. 2003, 216, 298-312.
15. Tao, Y.; Kanoh, H.; Abrams, L.; Kaneko, K. Chem. Rev. (Washington, DC, U. S.) 2006, 106, 896-910.
16. Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J.; Crowder, C. Nature (London) 1988, 331, 698-9.
17. Davis, M. E.; Montes, C.; Hathaway, P. E.; Arhancet, J. P.; Hasha, D. L.; Garces, J. M. J. Am. Chem. Soc. 1989, 111, 3919-24.
18. Dessau, R. M.; Schlenker, J. L.; Higgins, J. B. Zeolites 1990, 10, 522-4.
19. Vogt, E. T. C.; Richardson, J. W., Jr. J. Solid State Chem. 1990, 87, 469-71.
20. Hsu, C.-Y.; Chiang, A. S. T.; Selvin, R.; Thompson, R. W. J. Phys. Chem. B 2005, 109, 18804-18814.
21. Schoeman, B. J. Microporous Mesoporous Mater. 1998, 22, 9-22.
22. Mintova, S.; Valtchec, V.; Kanev, I. Zeolites 1993, 13, 102-6.
23. Yang, X.-Y.; Leonard, A.; Lemaire, A.; Tian, G.; Su, B.-L. Chem. Commun. (Cambridge, U. K.) 2011, 47, 2763-2786.
24. 寇龙, 王., 彭鹏, 阎子峰. 2014, 522-528.
25. Liu, Y.; Zhang, W.; Pinnavaia, T. J. J. Am. Chem. Soc. 2000, 122, 8791-8792.
26. Liu, Y.; Zhang, W.; Pinnavaia, T. J. Angew. Chem., Int. Ed. 2001, 40, 1255-1258.
27. Liu, Y.; Pinnavaia, T. J. J. Am. Chem. Soc. 2003, 125, 2376-2377.
28. Goa, Y.; Yoshitake, H.; Wu, P.; Tatsumi, T. Microporous Mesoporous Mater. 2004, 70, 93-101.
29. Pavel, C. C.; Park, S.-H.; Dreier, A.; Tesche, B.; Schmidt, W. Chem. Mater. 2006, 18, 3813-3820.
30. Pavel, C. C.; Schmidt, W. Chem. Commun. (Cambridge, U. K.) 2006, 882-884.
31. Jones, C. W.; Hwang, S.-J.; Okubo, T.; Davis, M. E. Chem. Mater. 2001, 13, 1041-1050.
32. Parikh, P. A.; Subrahmanyam, N.; Bhat, Y. S.; Halgeri, A. B. J. Mol. Catal. 1994, 88, 85-92.
33. Solomonik, V. G.; Mukhanov, A. A. Russ. J. Phys. Chem. A 2014, 88, 85-93.
34. Lee, G. S.; Maj, J. J.; Rocke, S. C.; Garces, J. M. Catal. Lett. 1989, 2, 243-7.
35. Janssen, A. H.; Koster, A. J.; de Jong, K. P. J. Phys. Chem. B 2002, 106, 11905-11909.
36. Kerr, G. T.; Chester, A. W.; Olson, D. H. Catal. Lett. 1994, 25, 401-2.
37. Ribeiro Carrott, M. M. L.; Russo, P. A.; Carvalhal, C.; Carrott, P. J. M.; Marques, J. P.; Lopes, J. M.; Gener, I.; Guisnet, M.; Ramoa Ribeiro, F. Microporous Mesoporous Mater. 2005, 81, 259-267.
38. Scherzer, J., Catalytic Materials: Relationship Between Structure and
Reactivity. 1984; Vol. 248.
39. Beyer, H. K., I. Belenykaja, Studies in Surface Science and Catalysis. Elsevier: 1980; Vol. 5.
40. Goyvaerts, D. J. A. M. P. J. G., P. A. Jacobs, Studies in Surface Science and Catalysis. Elsevier: 1991; Vol. 63.
41. Groen, J. C.; Peffer, L. A. A.; Moulijn, J. A.; Perez-Ramirez, J. Chem. - Eur. J. 2005, 11, 4983-4994.
42. van Donk, S.; Janssen, A. H.; Bitter, J. H.; de Jong, K. P. Catal. Rev. - Sci. Eng. 2003, 45, 297-319.
43. Dessau, R. M.; Valyocsik, E. W.; Goeke, N. H. Zeolites 1992, 12, 776-9.
44. Cizmek, A.; Subotic, B.; Aiello, R.; Crea, F.; Nastro, A.; Tuoto, C. Microporous Mater. 1995, 4, 159-68.
45. Groen, J. C.; Moulijn, J. A.; Perez-Ramirez, J. Ind. Eng. Chem. Res. 2007, 46, 4193-4201.
46. Groen, J. C.; Abello, S.; Villaescusa, L. A.; Perez-Ramirez, J. Microporous Mesoporous Mater. 2008, 114, 93-102.
47. Groen, J. C.; Sano, T.; Moulijn, J. A.; Perez-Ramirez, J. J. Catal. 2007, 251, 21-27.
48. Perez-Ramirez, J.; Verboekend, D.; Bonilla, A.; Abello, S. Adv. Funct. Mater. 2009, 19, 3972-3979.
49. Groen, J. C.; Jansen, J. C.; Moulijn, J. A.; Perez-Ramirez, J. J. Phys. Chem. B 2004, 108, 13062-13065.
50. Boisen, A.; Schmidt, I.; Carlsson, A.; Dahl, S.; Brorson, M.; Jacobsen, C. J. H. Chem. Commun. (Cambridge, U. K.) 2003, 958-959.
51. Garcia-Martinez, J.; Cazorla-Amoros, D.; Linares-Solano, A.; Lin, Y. S. Microporous Mesoporous Mater. 2001, 42, 255-268.
52. Wang, D.; Zhu, G.; Zhang, Y.; Yang, W.; Wu, B.; Tang, Y.; Xie, Z. New J. Chem. 2005, 29, 272-274.
53. Chu, N.; Wang, J.; Zhang, Y.; Yang, J.; Lu, J.; Yin, D. Chem. Mater. 2010, 22, 2757-2763.
54. Yang, Z.; Xia, Y.; Mokaya, R. Adv. Mater. (Weinheim, Ger.) 2004, 16, 727-732.
55. Jacobsen, C. J. H.; Madsen, C.; Houzvicka, J.; Schmidt, I.; Carlsson, A. J. Am. Chem. Soc. 2000, 122, 7116-7117.
56. Schmidt, I.; Boisen, A.; Gustavsson, E.; Sthl, K.; Pehrson, S.; Dahl, S.; Carlsson, A.; Jacobsen, C. J. H. Chem. Mater. 2001, 13, 4416-4418.
57. Chen, H.; Wydra, J.; Zhang, X.; Lee, P.-S.; Wang, Z.; Fan, W.; Tsapatsis, M. J. Am. Chem. Soc. 2011, 133, 12390-12393.
58. Xiao, F.-S.; Wang, L.; Yin, C.; Lin, K.; Di, Y.; Li, J.; Xu, R.; Su, D. S.; Schlogl, R.; Yokoi, T.; Tatsumi, T. Angew. Chem., Int. Ed. 2006, 45, 3090-3093.
59. Wang, L.; Zhang, Z.; Yin, C.; Shan, Z.; Xiao, F.-S. Microporous Mesoporous Mater. 2010, 131, 58-67.
60. Liu, S.; Cao, X.; Li, L.; Li, C.; Ji, Y.; Xiao, F.-S. Colloids Surf., A 2008, 318, 269-274.
61. Fu, W.-Q.; Zhang, L.; Tang, T.-D.; Ke, Q.-P.; Wang, S.; Hu, J.-B.; Fang, G.-Y.; Li, J.-X.; Xiao, F.-S. J. Am. Chem. Soc. 2011, 133, 15346-15349.
62. Gu, F. N.; Wei, F.; Yang, J. Y.; Lin, N.; Lin, W. G.; Wang, Y.; Zhu, J. H. Chem. Mater. 2010, 22, 2442-2450.
63. Zhu, H.; Liu, Z.; Kong, D.; Wang, Y.; Xie, Z. J. Phys. Chem. C 2008, 112, 17257-17264.
64. Choi, M.; Cho, H. S.; Srivastava, R.; Venkatesan, C.; Choi, D.-H.; Ryoo, R. Nat. Mater. 2006, 5, 718-723.
65. Choi, M.; Srivastava, R.; Ryoo, R. Chem. Commun. (Cambridge, U. K.) 2006, 4380-4382.
66. Srivastava, R.; Choi, M.; Ryoo, R. Chem. Commun. (Cambridge, U. K.) 2006, 4489-4491.
67. Shetti, V. N.; Kim, J.; Srivastava, R.; Choi, M.; Ryoo, R. J. Catal. 2008, 254, 296-303.
68. Na, K.; Choi, M.; Ryoo, R. Microporous Mesoporous Mater. 2013, 166, 3-19.
69. Choi, M.; Na, K.; Kim, J.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. Nature (London, U. K.) 2009, 461, 246-249.
70. Na, K.; Jo, C.; Kim, J.; Cho, K.; Jung, J.; Seo, Y.; Messinger, R. J.; Chmelka, B. F.; Ryoo, R. Science (Washington, DC, U. S.) 2011, 333, 328-332.
71. Na, K.; Choi, M.; Park, W.; Sakamoto, Y.; Terasaki, O.; Ryoo, R. J. Am. Chem. Soc. 2010, 132, 4169-4177.
72. Puertolas, B.; Hill, A. K.; Garcia, T.; Solsona, B.; Torrente-Murciano, L. Catal. Today 2015, 248, 115-127.
73. Hayashi, T.; Tanaka, K.; Haruta, M. J. Catal. 1998, 178, 566-575.
74. Haruta, M.; Uphade, B. S.; Tsubota, S.; Miyamoto, A. Res. Chem. Intermed. 1998, 24, 329-336.
75. Nijhuis, T. A.; Huizinga, B. J.; Makkee, M.; Moulijn, J. A. Ind. Eng. Chem. Res. 1999, 38, 884-891.
76. Sinha, A. K.; Seelan, S.; Tsubota, S.; Haruta, M. Angew. Chem., Int. Ed. 2004, 43, 1546-1548.
77. Taylor, B.; Lauterbach, J.; Delgass, W. N. Appl. Catal., A 2005, 291, 188-198.
78. Zhan, G.; Du, M.; Huang, J.; Li, Q. Catal. Commun. 2011, 12, 830-833.
79. Bravo-Suarez, J. J.; Bando, K. K.; Lu, J.; Haruta, M.; Fujitani, T.; Oyama, S. T. J. Phys. Chem. C 2008, 112, 1115-1123.
80. Chowdhury, B.; Bravo-Suarez, J. J.; Mimura, N.; Lu, J.; Bando, K. K.; Tsubota, S.; Haruta, M. J. Phys. Chem. B 2006, 110, 22995-22999.
81. Bravo-Suarez, J. J.; Bando, K. K.; Akita, T.; Fujitani, T.; Fuhrer, T. J.; Oyama, S. T. Chem. Commun. (Cambridge, U. K.) 2008, 3272-3274.
82. Lee, W.-S.; Zhang, R.; Akatay, M. C.; Baertsch, C. D.; Stach, E. A.; Ribeiro, F. H.; Delgass, W. N. ACS Catal. 2011, 1, 1327-1330.
83. Lee, W.-S.; Cem Akatay, M.; Stach, E. A.; Ribeiro, F. H.; Nicholas Delgass, W. J. Catal. 2012, 287, 178-189.
84. Liu, T.; Hacarlioglu, P.; Oyama, S. T.; Luo, M.-F.; Pan, X.-R.; Lu, J.-Q. J. Catal. 2009, 267, 202-206.
85. Lee, W.-S.; Cem Akatay, M.; Stach, E. A.; Ribeiro, F. H.; Nicholas Delgass, W. Journal of Catalysis 2012, 287, 178-189.
86. Joshi, A. M.; Delgass, W. N.; Thomson, K. T. J. Phys. Chem. C 2007, 111, 7841-7844.
87. W. Chester , E. D., Zeolite Characterization and Catalysis. 2009.
88. Pine, S. H.; Sanchez, B. L. J. Org. Chem. 1971, 36, 829-832.
89. Takei, T. T. A. I. N. T. F. M. O. K. O. J. H. T. I., M. Haruta, Advances in Catalysis. 2012; Vol. 55.
90. Sooknoi, T.; Chitranuwatkul, V. Journal of Molecular Catalysis A: Chemical 2005, 236, 220-226.
91. Saxena, S.; Basak, J.; Hardia, N.; Dixit, R.; Bhadauria, S.; Dwivedi, R.; Prasad, R.; Soni, A.; Okram, G. S.; Gupta, A. Chemical Engineering Journal 2007, 132, 61-66.
92. Fan, W.; Duan, R.-G.; Yokoi, T.; Wu, P.; Kubota, Y.; Tatsumi, T. J. Am. Chem. Soc. 2008, 130, 10150-10164.
93. Fan, F.; Feng, Z.; Li, C. Chem Soc Rev 2010, 39, 4794-801.
94. Guo, Q.; Sun, K.; Feng, Z.; Li, G.; Guo, M.; Fan, F.; Li, C. Chemistry 2012, 18, 13854-60.
95. Watanabe, R.; Yokoi, T.; Tatsumi, T. J. Colloid Interface Sci. 2011, 356, 434-441.
96. Kawai, T.; Tsutsumi, K. Colloid Polym. Sci. 1998, 276, 992-998.
97. Thomas, J. M.; Raja, R.; Lewis, D. W. Angew Chem Int Ed Engl 2005, 44, 6456-82.
98. Maschmeyer, T.; Rey, F.; Sankar, G.; Thomas, J. M. Nature (London) 1995, 378, 159-62.
99. Gianotti, E.; Bisio, C.; Marchese, L.; Guidotti, M.; Ravasio, N.; Psaro, R.; Coluccia, S. J. Phys. Chem. C 2007, 111, 5083-5089.
100. Bordiga, S.; Bonino, F.; Damin, A.; Lamberti, C. Phys Chem Chem Phys 2007, 9, 4854-78.
101. Yap, N. Journal of Catalysis 2004, 226, 156-170.