研究生: |
鄧紹猷 Shao-You Deng |
---|---|
論文名稱: |
三五族半導體元件中製程引起之暫態效應: 磷化銦鎵/砷化鎵異質接面雙載子電晶體與砷化鋁鎵/砷化鎵假晶高速電子遷移率電晶體 Process-Induced Transient Effects in III/V Compound Semiconductor Devices: InGaP/GaAs HBTs and AlGaAs/GaAs pHEMTs |
指導教授: |
李雅明
Joseph Ya-min Lee |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 57 |
中文關鍵詞: | 氫 、異質接面 、磷化銦鎵 、異質接面雙載子電晶體 、假晶高速電子遷移率電晶體 |
外文關鍵詞: | Hydrogen, heterojunction, InGaP, HBT, pHEMT |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分兩部分,第一部份討論在磷化銦鎵的異質接面雙載子電晶體中,由於氫的包覆效應產生的特性之研究,由於氫在此種元件中所造成的載子包覆現象是引起電流增益增加的暫態現象的主要原因,本論文提出一個計算氫包覆比例的模型,並與SIMS量測的結果相比對,經過幾次熱回火處理,此種暫態效應可以被消除。第二部分以砷化鋁鎵/砷化鎵假晶高速電子遷移率電晶體元件與結構討論在磊晶成長的過程中,磷的原料會被沉積在成長腔體內,造成在關閉原料來源時仍有從腔体表面逸散的元素成分稱為記憶效應,實驗中藉由使用不同的材料源,PH3 與 TBP作為五族元素『磷』的材料源實驗中,以TBP取代PH3可以降低背景值達100倍,由於MBE系統中並不含任何磷的材料源,由其所成長的試片與MOVPE所成長的試片比較,也同樣證明以TBP做為材料源的優點。另外提出以電壓-電容量測方法,在pHEMT元件上,來決定緩衝層的磊晶品質,達到有效的監測與改善元件的絕緣性與電特性。
There are two parts in this thesis. Part I focuses on the transient effect in InGaP/GaAs hetero-junction bipolar transistors (HBTs). Part II focuses on the P memory effect and buffer-layer-quality determination using C-V measurement in AlGaAs/GaAs pseudomorphic high-electron-mobility transistors (pHEMTs). The characterization of hydrogen passivation for InGaP HBTs grown on semi-insulating GaAs substrates is studied. The transient effect caused by hydrogen passivation results the current gain (□) increase. The calculation of the hydrogen passivation ratio in the base layer is proposed to compare with the results using the secondary ion mass spectrometry (SIMS) measurement. The transient effect can be eliminated after three or more cycles of thermal annealing. The phosphorus concentration profiles were obtained by SIMS measurement for the analysis of the memory effect. The memory effect of phosphorus is observed during the epitaxial growth. The background phosphorus concentration can be improved about two order magnitudes using the group-V elements of tertiarybutylphosphine (TBP) instead of phosphine (PH3). A comparison of samples grown by molecular-beam epitaxy (MBE) reactor and metal-organic vapor-phase epitaxy (MOVPE) is also demonstrated. Capacitance-voltage (C-V) measurements are introduced to monitor and improve the epitaxial buffer layers in pHEMTs.
References
1.1 H. Kroemer, “Theory of a wide-gap emitter for transistors,” Proc. IRE, Vol. 45, p. 1535, 1957.
1.2 C. R. Bolognesi, N. Matine, M. W. Dvorak, X. G. Xu, and S. P. Watkins, “ None-blocking collector InP/GaAs0.51Sb0.49/InP double heterojunction bipolar transistors with a staggered lineup base-collector junction,” IEEE Electron Device Letters, Vol. 20, pp. 155-157, 1999.
1.3 M. Iwamoto, P. M. Asbeck, T. S. Low, C. P. Hutchinson, J. B. Scott, A. Cognata, X. Qin, L. H. Camnitz, and D. C. D’Avanzo, “Linearity characteristics of GaAs HBTs and the influence of collector design,” IEEE Transactions on Microwave Theory and Techniques, Vol. 48., pp. 2377-2388 , 2000.
1.4 F. Ali and A. Gupta, “HEMTs and HBTs: Devices, Fabrication, and Circuits,” Artech House, Charpter 5, 1991.
1.5 B. P. Yan, C. C. Hsu, X. Q. Wang, and E. S. Yang, “Low turn-on voltage InGaP/GaAsSb/GaAs double HBTs grown by MOCVD,” IEEE Electron Device Letters, Vol. 23, pp. 170-172, 2002.
1.6 A. C. Han, M. Wojtowicz, T. R. Block, X. Zhang, T. P. Chin, A. Cavus, A. Oki, and D. C. Streit, “Characterization of GaAs/AlGaAs heterojunction bipolar transistor devices using photoreflectance and photoluminescence,” Jounal of Applied Physics, Vol. 86, pp. 6160-6163,1999.
1.7 W. Y. Han, Y. Lu, H. S. Lee, M. W. Cole, S. N. Schauer, R. P. Moerkirk, K. A. Jones, and L. W. Yang, “Annealing effects on heavily carbon-doped GaAs,” Applied Physics Letters, Vol. 61, pp. 87-89, 1992.
1.8 S. R. Bahl, L. H. Camnitz, D. Houng, and M. Mierzwinski, “Reliability Investigation of InGaP/GaAs Heterojunction Bipolar Transistors”, IEEE Electron Device Letters, Vol. 17, No. 9, pp. 446-448, 1996.
1.9 J. Y. Chi, and K. Lu, “A mechanism for hydrogen-related transient effects in carbon-doped AlGaAs/GaAs heterostructure bipolar transistors,” IEEE Electron Devices Letters, Vol. 19, pp. 408-410, 1998.
1.10 C. R. Lutz, R. E. Welser, and N. Pan, K. M. Lau, C. F. Musante, “Transient Characteristics of InGaP/GaAs/AlGaAs Double Heterojunction Bipolar Transistors, GaAs MANTECH, pp. 149-152, 2000.
1.11 Gerald B. Stringfellow, “Organometallic Vapor-Phase Epiytaxy Theory and Practice,” second edition, Acdemic Press, 1999, Chapter 1 and 2.
1.12 H. M. Manasevit, Applied Physics Letters, Vol 12, pp.156, 1968.
1.13 M. Tao, “A kinetic model for metalorganic chemical vapor deposition from trimethylgallium and arsine,” Journal of Applied Physics, Vol. 87, pp. 3554-3562, 2000.
1.14 H.C. Kuo, D. Ahmari, B. G. Moser, J. Mu, M. Hattendorf, D. Dcott, R. Meyer, M. Feng, and G. E. Stillman, “Growth of carbon doping Ga0.47In0.53As using CBr4 by gas source molecular beam epitaxy for InP/InGaAs heterojunction bipolar transistors,” Journal Vacuum Society Technology B, Vol. 17, pp. 1185-1189 , 1999.
1.15 W. C. Liu, W. C. Wang, J. Y. Chen, H. J. Pan, S. Y. Cheng, K. B. Thei, and W. L. Chang, “A novel InP/InAlGaAs negative-differential-resistance heterojunction bipolar transistor (NDR-HBT) with interesting topee-shaped current-voltage characteristics,” IEEE Electron Devices Letters, Vol. 20, pp. 510-513, 1999.
1.16 S. M. Sze, “High-Speed semiconductor Devices,” John Wiley &Sons, Inc., Chapter 6, 1990.
1.17 T. Kobayashi, K. Taira, F. Nakamura, and H. Kawai, “Band lineup for a GaInP/GaAs heterojection measured by a hogh-gain Npn heterojuction bipolar transistor grown by metalorganic chemical vapor deposition,” Journal Applied Physics. Vol. 65, pp. 4898-4902, 1989.
2.1 S. R. Bahl, L. H. Camnitz, D. Houng, and M. Mierzwinski, “Reliability Investigation of InGaP/GaAs Heterojunction Bipolar Transistors”, IEEE Electron Device Letters, Vol. 17, No. 9, pp. 446-448, 1996.
2.2 N. Pan, J. Elliott, M. Knowles, D.P. Vu, K. Kishimoto, J.K. Twynam, H. Sato, M. T. Fresina, and G. E. Stillman, “High Reliability InGaP/GaAs HBT”, IEEE Electron Device Letters, Vol. 19, No. 4, pp. 115-117, 1998.
2.3 T. S. Low, C. P. Hutchinson, P. C. Canfield, T. S. Shirley, R. E. Yeats, J. S. C. Chang, G. K. Essifile, M. K. Culver, W. C. Whiteley, D. C. D’Avanzo, N. Pan, J.Elliot, and C. Lutz, “Migration from an AlGaAs to an InGaP Emitter HBT IC Process for Improved reliability”, IEEE Proc. IEDM, pp. 153-156, 1998.
2.4 S. R. Bahl, L. H. Camnitz, D. Houng, M. Mierzwinski, J. Turner, and D. Lefforge, “Reliability Investigation of InGaP/GaAs heterojunction bipolar transistors”, IEEE proc. IEDM, pp. 815-818, 1995.
2.5 H. Fushimi and K. Wada, “Degradation Mechanism in Carbon-Doped GaAs Minority-Carrier Injection Devices”, IEEE Trans. On Electron Devices, Vol. 44, No. 11, pp. 1996-2001, 1997.
2.6 J. Chevallier, W. C. Dautremont-Smith, C. W. Tu, and S. J. Pearton, “Donor neutralization in GaAs (Si) by atomic hydrogen” Appl. Phys. Lett. Vol 47, No. 2, pp. 108, 1985.
2.7 S. J. Pearton, C. R. Abernathy, and J. Lopata, “Thermal stability of dopant-hydrogen pairs in GaAs”, Appl. Phys. Lett., Vol.59, No. 27, pp.3571-3573, 1991.
2.8 Hiroshi Fushimi and Kazumi Wada, “The presence of isolated hydrogen donors in heavily carbon-doped GaAs”, J. of Crystal Growth, Vol. 145, pp. 420-426, 1994.
2.9 S. A. Stockman, A. W. Hanson, S. M. Lichtenthal, M. T. Fresina, G. E. HoFler, K. C. Hsieh and G. E. stillman, “Passivation of Carbon Acceptors during Growth of Carbon-Doped GaAs, InGaAs, and HBTs by MOCVD”, J. of Electronic Material, Vol. 21, No. 12, pp. 1111-1117, 1992.
2.10 S. A. Stockman, A. W. Hanson, S. L. Jackson, J. E. Baker, and G. E. Stillman, “Effect of post-growth cooling ambient on acceptor passivation in carbon-doped GaAs grown by metalorganic chemical vapor deposition”, Appl. Phys. Lett. Vol. 62, No. 11, pp. 1248-1250, 1993.
2.11 C. R. Lutz, R. E. Welser, and N. Pan, K. M. Lau, C. F. Musante, “Transient Characteristics of InGaP/GaAs/AlGaAs Double Heterojunction Bipolar Transistors, GaAs MANTECH, pp. 149-152, 2000.
2.12 J. Y. Chi, K. Lu, “A Mechanism for Hydrogen-Related Transient Effects in Carbon-Doped AlGaAs/GaAs Heterostructure Bipolar Transistors”, IEEE Electron Device Letters, Vol. 19, No. 11, 1998, pp. 408-410.
2.13 T. Handerson, V. Ley, T. Kim, T. Moise, and D. Hill, IEDM Tech. Digest, 1996, pp. 203-206.
2.14 S. M. Sze, “Physics of Semiconductor Devices”, John Wiley & Sons, Chapter 3, pp. 139-140, and p. 19, 1981.
3.1 M. Borgarino, R. Menozzi, D. Dieci, L. Catyani, F. Fantini, “Reliability Physics of Compound Semiconductor Transistors for Microwave Applications,” Microelectronics Reliability, Vol. 41, 2001, pp. 21-30.
3.2 T. S. Low, C. P. Hutchinson, P. C. Canfield, T. S. Shirley, R. E. Yeats, J. S. C. Chang, G. K. Essifile, M. K. Culver, W. C. Whiteley, D. C. D’Avanzo, N. Pan, J.Elliot, and C. Lutz, “Migration from an AlGaAs to an InGaP Emitter HBT IC Process for Improved reliability,” IEEE Proc. IEDM, 1998, pp. 153-156.
3.3 T. Handerson, V. Ley, T. Kim, T. Moise, and D. Hill, “ Hydrogen-Related Burn-in GaAs/AlGaAs HBTs and Implications for Reliability,” IEDM Tech. Digest, 1996, pp. 203-206.
3.4 J. Y. Chi and K. Lu, “A Mechanism for Hydrogen-Related Transient Effects in Carbon-Doped AlGaAs/GaAs Heterostructure Bipolar Transistors,” IEEE Electron Device Letters, Vol. 19, No. 11, 1998, pp. 408-410.
3.5 C. R. Lutz, R. E. Welser, and N. Pan, K. M. Lau, C. F. Musante, “Transient Characteristics of InGaP/GaAs/AlGaAs Double Heterojunction Bipolar Transistors,” Digest, GaAs MANTECH, 2000, pp. 149-152.
3.6 S. Y. Deng, C. H. Wu, and J. Y. M. Lee, “ A Study on the Transient Effect due to Hydrogen Passivation in InGaP Hetero-junction Bipolar Transistors,” IEEE Electron Device Letters, Vol. 24, No. 6, 2003 pp. 372-374.
3.7 H. Fushimi and K. Wada, “Degradation Mechanism in Carbon-Doped GaAs Minority-Carrier Injection Devices,” IEEE Tarns. Electron Devices, Vol. 44, No. 11, 1997, pp. 1996-2001.
4.1 C. R. Bolognesi, N. Matine, M. W. Dvorak, X. G. Xu, J. Hu, and S. P. Watkins, “Non-Blocking Collector InP/GaAs0.51Sb0.49/InP Double Heterojunction Bipolar Transistors with a Staggered Lineup Base–Collector Junction,” IEEE Electron Device Letters, Vol. 20, pp. 155-157, 1999.
4.2 S. L. Jackson, S. Thomas, M. T. Fresina, D. A. Ahmari, J. E. Baker, and G. E. Stillman, “Silicon doping of InP, GaAs, In0.53Ga0.47As and In0.49Ga0.51P grown by gas source and metalorganic molecular beam epitaxy using a SiBr4 vapor source,” Indium Phosphide and Related Materials, 1994. Conference Proceedings, pp. 57-60, 1994.
4.3 M. Kamp, G. Mörsch, J. Gräber, and H. Lüth, “Te doping of GaAs using diethyl-tellurium,” Journal Applied Physics, Vol. 76, pp. 1974-1976, 1994.
4.4 A. Z. Li, Y. Q. Chen, J. X. Chen, M. Qi, X. C. Liu, J. Chen, R. M. Wang, W. L. Wang, and W. X. Li, “High-performance enhancement-mode pseudomorphic InGaP/InGaAs/GaAs HEMT structures by gas source molecular beam epitaxy,” Journal of Crystal Growth, Vol. 251, pp. 816–821, 2003.
4.5 W. S. Hobson, T. D. Harris, C. R. Abernathy, and S. J. Pearton, “High quality AlxGa1-xAs grown by organometallic vapor phase epitxay using trimethylaminealane as the aluminum precursor,” Applied Physics Letters, Vol. 58, pp. 77-79, 1991.
4.6 Q. J. Hartmann, N. F. Gardner, T. U. Horton, A. P. Curtis, D. A. Ahmari, M. T. Fresina, J. E. Baker, and G. E. Stillman, “Semi-insulating In0.49Ga0.51P grown at reduced substrate temperature by low-pressure metalorganic chemical vapor deposition,” Applied Physics Letters, Vol. 70, pp. 1822-1824, 1997.
4.7 S. A. Stockman, G. E. Hofler, J. N. Bailargeon, K. C. Hsieh, K. Y. Cheng, and G. E. Stillman, “Characterization of heavily carbon-doped GaAs grown by metalorganic chemical vapor deposition and metalorganic molecular beam epitaxy,” Journal Applied Physics, Vol. 72, pp. 981-987, 1992.
4.8 S. W. Chiou, C. P. Lee, J. M. Hong, C. W. Chen, Y. Tsou, “Optimization OMVPE-grown GaInP/GaAs quantum well interfaces,” Journal of Crystal Growth, Vol. 206, pp. 166–170, 1999.
4.9 J. R. Dong, J. H. Teng, S. J. Chua, Y. J. Wang, B. C. Foo, H. R. Yuan, S. Yuan, “High quality AlGaInP epilayers grown by MOVCD using TBP for red lasers,” Journal of Crystal Growth, Vol. 253, pp. 161–166, 2003.
4.10 S. Dhellemmes, S. Godeya, A. Wilk, X. Wallart, F. Mollot, “AS–P interface-sensitive GaInP/GaAs structures grown in a production MBE system,” Journal of Crystal Growth, Vol. 278, pp. 564–568, 2005.
4.11 R. Beccard, G. Lengeling, D. Schmitz, Y. Gigase, H. Jurgensen, “Replacement of hydrides by TBAs and TBP for the growth of various III-V materials in production scale MOVPE reactors,” Journal of Crystal Growth, Vol. 170, pp. 97-102, 1997.
4.12 D. Ritter, H. Heinecke, “Evaluation of cracking efficiency of As and P precursors,” Journal of Crystal Growth, Vol. 170, pp. 149-154, 1997.
4.13 M. Keidler, M. Popp, D. Ritter, B. Marheineke, H. Heinecke, H. Baumeister, E. Veuhoff, “Growth of 1.55 □m DH lasers tructures using TBAs and TBP in MOMBE,” Journal of Crystal Growth, Vol. 170, pp. 161-166, 1997.
5.1 A. Wakejima, K.Ota, K. Matsunaga, and M. Kuzuhara, “A GaAs-Based Field-Modulating Plate HFET with improved WCDMA Peak-Output-Power Characteristics”, IEEE Trans. Electron Devices, vol. 50, no. 9, pp. 1983-1987, 2003.
5.2 H. C. Chiu, S. C. Yang, and Y. J. Chan, “AlGaAs/InGaAs Heterostructure Doped-Channel FET’s Exhibiting Good Electrical Performance at High Temperature”, IEEE Trans. Electron Devices, vol. 48, no. 10, pp. 2210-2215, 2003.
5.3 K. H. Ahn, Y. J. Jeon, Y. H. Jeong, C. E. Yun, and H. M. Pyo, “Enhanced Current-Voltage Characteristics of Al0.25Ga0.75As/In0.25Ga0.75As/GaAs P-HEMT using Inverted Double Channel Structure, Jpn. J. Appl. Phys, Part 1, vol. 137, no. 37, pp. 1377-1379, 1998.
5.4 Y. J. Jeon, Y.H. Jeong, B. Kim, Y. G. Kim, W. P. Hong, and M. S. Lee, “DC and RF Performance of LP-MOCVD Grown Al0.25Ga0.75As/InxGa1-xAs (x=0.15-0.28) P-HEMT’s with Si-Delta Doped GaAs Layer”, IEEE Trans. Electron Device Lett., vol. 16, no. 12, pp. 563-565, 1995.
5.5 M. J. Kao, H. M. Shieh, W. C. Hsu, T. Y. Lin, Y. H. Wu, and R. T. Hsu, “Investigation of the Electron Transfer Characteristics in Multi-d-Doped GaAs FET’s”, IEEE Trans. Electron Devices, vol. 43, no. 8, pp. 1181-1186, 1996.
5.6 Y. J. Jeon, Y. H. Jeong, B. Kim, Y. G. Kim, W. P. Hong, and M. S. Lee, “DC and RF Performance of LP-MOCVD Grown Al0.25Ga0.75As/InxGa1-xAs (x=0.15-0.28) P-HEMT’s with Si-Delta Doped GaAs Layer,” IEEE Electron Device Letters, vol. 16, no. 12, pp. 563-565, 1995.
5.7 R. T. Lareau, K. A. Jones, T. Monahan, J. R. Flemish, R. L. Pfeffer, R. E. Sherriff, C. W. Litton, R. Jones, C. E. Stutz, and D. C. Look, “Comparison of OMVPE and MBE grown Al GaAs/ InGaAs pHEMT structures”, Journal of Crystal Growth, vol. 167, pp. 406-414, 1996.
5.8 F. Schuermeyer, C. Cerny, C. Bozada, Z-Q. Fang and D. C. Look, “Charge Storage Effects in Pseudomorphic High Electron Mobility Transistors,” Jpn. J. Appl. Phys. Part 1, vol. 36, no. 3B, pp. 1330-1334, 1997.
5.9 R. Quay, K. Hess, R. Reuter, M. Schlechtweg, T. Grave, V. Palankovski, and S. Selberherr, ”Nonlinear Electronic Transport and Device Performance of HEMTs, ” IEEE Trans. Electron Devices, vol. 48, no. 2, pp. 210-217, 2001.
5.10 Dieter K. Schroder, “Semiconductor Material and Device Characterization”, John Wiley & Sons, Inc., Chapter 2, page 64, 1998.