研究生: |
林聖祐 Lin, Sheng-Yu |
---|---|
論文名稱: |
具能量收集及儲能之開關式磁阻馬達驅動系統 A SWITCHED-RELUCTANCE MOTOR DRIVE WITH ENERGY HARVEST AND STORAGE |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
劉添華
Liu, Tian-Hua 陳景然 Chen, Ching-Jan |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 141 |
中文關鍵詞: | 開關式磁阻馬達 、切換式整流器 、隔離轉換器 、直流/直流轉換器 、增壓 、電壓控制 、速度控制 、電流控制 、儲能系統 、蓄電池 、飛輪 、超級電容 |
外文關鍵詞: | switched-reluctance motor, switch-mode rectifier, isolated converter, DC/DC converter, voltage boosting, voltage control, speed control, current control, energy storage system, battery, flywheel, supercapacitor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在建立一具插入式能源收集及儲能源支撐之開關式磁阻馬達驅動系統。首先建構一非對稱橋式轉換器供電之開關式磁阻馬達驅動系統,透過妥善設計電力電路、換相移位機構、電流及速度控制器等,具有良好之驅動特性。此外,由於三相雙向切換式整流器建立之升壓直流鏈,使馬達於高速高載下之驅動性能得以提升,也可成功地執行反轉及再生剎車。
所配裝適當之儲能裝置,可改善開關式磁阻馬達驅動系統之供電品質,所建立之儲能系統包含開關式磁阻馬達驅動之飛輪、超級電容與蓄電池,各具雙向介面轉換器,並經一雙向隔離諧振轉換器介接至直流鏈。透過適當設計之電力電路及控制器,皆具良好之充放電特性。再於其直流鏈研究所建電池儲能系統與開關式磁阻馬達驅動系統之互聯操作。
最後,開發一以單相升壓切換式整流器為主之插入式能源收集器,可輸入收集之單相交流或直流電源,可減少馬達驅動系統由市電供給之能源消耗。或者,能源收集裝置可對儲能系統進行輔助充電。
This thesis establishes a switched-reluctance motor (SRM) drive with plug-in energy harvester (PEH) and energy storage system (ESS). First, the asymmetric bridge converter fed SRM drive is constructed. Satisfactory driving performance is preserved through the properly designed power circuit, commutation setting and shifting schemes, current and speed control schemes, etc. In addition, thanks to the boosted DC-link voltage established by the three-phase bidirectional boost switch-mode rectifier (SMR), the performances under heavier load and higher speed are further enhanced. Moreover, the reversible and regenerative braking operations are conductible.
The SRM drive power supplying quality can be improved by adding some suited energy storage devices. An SRM-driven flywheel, a super-capacitor and a battery energy storage systems are established. Each storage device is equipped with a one-leg bidirectional interface converter. They are connected to the motor drive DC-link via a bidirectional CLLC resonant isolated DC/DC converter. Through the properly designed power circuits and controllers, each of the established energy storage system possesses good charging and discharging characteristics. Then the interconnected operation of the developed battery energy storage system to the SRM drive at its DC-link is studied.
Finally, a single-phase boost SMR schematic oriented PEH is developed. The harvested single-phase AC or DC source can be inputted to reduce the SRM drive consumed energy from the mains. Or the energy storage devices can be made auxiliary charging by the PEH.
A. SRM Basics
[1] P. C. Sen, Principles of Electric Machines and Power Electronics, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2014.
[2] Z. Yang, F. Shang, I. P. Brown, and M. Krishnamurthy, “Comparative study of interior permanent magnet, induction, and switched reluctance motor drives for EV and HEV applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 245-254, Oct. 2015.
[3] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001.
[4] M. Cacciato, A. Consoli, G. Scarcella, and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE PESC, 2008, pp. 1235-1241.
[5] Y. W. Lin, K. F. Chou, M. J. Yeh, C. C. Wang, S. L. Yu, C. C. Yang, Y. C. Chang, and C. M. Liaw, “Design and control of a switched-reluctance motor-driven cooling fan,” IET Power Electron., vol. 5, no. 9, pp. 1813-1826, Jul. 2012.
[6] K. Koinuma, K. Aiso, and K. Akatsu,“A novel self-cooling SRM for electric hand tools,” in Proc. IEEE ECCE., 2018, pp. 6116-6120.
[7] J. W. Jiang, B. Bilgin, and A. Emadi, “Three-phase 24/16 switched reluctance machine for a hybrid electric powertrain,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 76-85, Mar. 2017.
[8] M. M. Namazi, S. M. S. Nejad, A. Tabesh, A. Rashidi, and M. Liserre, “Passivity-based control of switched reluctance-based wind system supplying constant power load,” IEEE Trans. Ind. Electron., vol. 65, no. 12, pp. 9550-9560, 2018.
[9] P. J. D. S. Neto, T. A. D. S. Barros, M. V. D. Paula, R. R. D. Souza, and E. R. Filho, “Design of computational experiment for performance optimization of a switched reluctance generator in wind system,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 406-419, Mar. 2018.
[10] J. B. Bartolo, M. Degano, J. Espina, and C. Gerada, “Design and initial testing of a high-speed 45-kw switched reluctance drive for aerospace application,” IEEE Trans. Ind. Electron., vol. 64, no. 2, pp. 988-997, 2017.
[11] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, Feb. 2002.
[12] K. Vijayakumar, R. Karthikeyan, S. Paramasivam, R. Arumugam, and K. N. Srinivas, “Switched reluctance motor modeling, design, simulation, and analysis: a comprehensive review,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4605-4617, Dec. 2008.
[13] P. C. Desai, M. Krishnamurthy, N. Schofield, and A. Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: concept to implementation,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 649-659, Feb. 2010.
[14] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra, and I. Garate, “SRM converter topologies for EV application: State of the technology,” in Proc. IEEE ISIE, 2017, pp. 861-866.
B. Converters Circuits
[15] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1047, Nov. 1991.
[16] M. Ehsani, J. T. Bass, T. J. E. Miller, and R. L. Steigerwald, “Development of a unipolar converter for variable reluctance motor drives,” IEEE Trans. Ind. Appl., vol. IA-23, no. 3, pp. 545-553, May/Jun. 1992.
[17] J. Ye, P. Malysz, and A. Emadi, “A fixed-switching-frequency integral sliding mode current controller for switched reluctance motor drives,” in Proc. IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 3, no. 2, 2015. pp. 381-394.
[18] T. Nonaka, Y. Nakazawa, K. Ohyama, H. Fujii, H. Uehara, and Y. Hyakutake, “Inverter improving motor efficiency of switched reluctance motor for electric vehicle,” in Proc. EPE-PEMC, 2013, pp. 1-8.
[19] J. Ye and A. Emadi, “Power electronic converters for 12/8 switched reluctance motor drives: a comparative analysis,” IEEE Trans. Transport. Electrific., pp. 1-6, 2014.
[20] F. Peng, J. Ye, and A. Emadi, “An asymmetric three-level neutral point diode clamped converter for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 32, no. 11, pp. 8618-8631, 2017.
[21] D. Cabezuelo, J. Andreu, I. Kortabarria, E. Ibarra, and I. Garate, “SRM converter topologies for EV application: State of the technology,” in Proc. IEEE ISIE, 2017, pp. 861-866.
[22] A. M. Hava, V. Blasko, and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, Sep./Oct. 1992.
[23] S. Ebrahimi, V. Najmi, S. Ebrahimi, and H. Oraee, “A ZVS-resonant bifilar drive circuit for SRM with a reduction in stress voltage of switches,” in Proc. IEEE ACEMP, Sep. 2011, pp. 125-128.
[24] S. Chan and H. R. Bolton, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” in Proc. IEEE Elect. Power Appl., Sep. 1993, vol. 140, no. 5, pp. 316-322.
[25] K. R. Geldhof, T. J. Vyncke, F. M. L. L. De Belie, L. Vandevelde, J. A. A. Melkebeek and R. K. Boel “Embedded Runge-Kutta methods for the integration of a current control loop in an SRM dynamic finite element model,” IET Sci. Meas. Technol., vol. 1, no. 1, pp. 17-20, 2007.
[26] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IET Elect. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[27] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, Mar. 2009.
[28] J. Y. Chai and C. M. Liaw, “Development of a switched-reluctance motor drive with PFC front end,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 30-42, May. 2009.
[29] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, Sep. 2010.
C. Modeling and Parameter Estimation of SRM
[30] K. I. Hwu, “Development of a switched reluctance motor drive,” Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, ROC, 2001.
[31] B. P. Loop and S. D. Sudoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Appl., vol. 39, no. 3, pp. 743-751, May/Jun. 2003.
[32] M. Ayaz and A. B. Yildiz, “An equivalent circuit model for switched reluctance motor,” in Proc. IEEE MELCON., May. 2006, pp. 1182-1185.
[33] V. Valdivia, R. Todd, F. J. Bryan, A. Barrado, A. Lázaro, and A. J. Forsyth, “Behavioral modeling of a switched reluctance generator for aircraft power systems,” IEEE Trans. Ind. Electron., vol. 61, no. 6, pp. 2690-2699, Jun. 2014.
[34] J. Dong, B. Howey, B. Danen, J. Lin, J. W. Jiang, B. Bilgin, and A. Emadi, “Advanced dynamic modeling of three-phase mutually coupled switched reluctance machine,” IEEE Trans. Energy Convers., vol. 33, no. 1, pp. 146-154, Mar. 2018.
D. Commutation Instant Tuning
[35] M. Rodrigues, P. J. C. Branco, and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, Jun. 2001.
[36] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, Sep. 2003.
[37] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, Mar. 2003.
[38] J. Y. Chai, Y. W. Lin, and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEEE Proc. Elec. Power Appl., vol. 153, no. 3, pp. 348-360, May 2006.
[39] S. A. Fatemi, H. M. Cheshmehbeigi, and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
[40] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tuning,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, Jul. 2015.
[41] H. N. Huang, K. W. Hu, Y. W. Wu, T. L. Jong and C. M. Liaw, “A current control scheme with back-EMF cancellation and tracking error adapted commutation shift for switched- reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7381-7392, Dec. 2016.
[42] H. N. Huang, K. W. Hu, and C. M. Liaw, “A switch-mode rectifier fed switched-reluctance motor drive with dynamic commutation shifting using DC-link current,” IET Elec. Power Appl., vol. 11, no. 4, pp. 640-652, Dec. 2017.
[43] C. Y. Ho, J. C. Wang, K. W. Hu, and C. M. Liaw, “Development and operation control of a switched-reluctance motor driven flywheel,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 526-537, Jan. 2019.
[44] D. H. Lee and J. W. Ahn, ”A novel four-level converter and instantaneous switching angle detector for high speed SRM drive,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 2034-2041, Sep. 2007.
E. Current Control
[45] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, Feb. 2009.
[46] C. H. Cheng, C. J. Chen, and S. S Wang, ”A brief discussion of two stability improvement methods for wide-operation-range flyback converter with peak-current-mode control at variable frequency,” IEEE Trans. Ind. Appl.,vol. 55, no.2, pp. 1667-1676, Mar./Apr, 2019.
[47] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[48] R. Gobbi and K. Ramar, “Optimization techniques for a hysteresis current controller to minimize torque ripple in switched reluctance motors,” IET Proc. Elec. Power Appl., vol. 3, no. 5, pp. 453-460, Dec. 2009.
[49] I. M. Alsofyani, K. Y. Kim, S. S Lee, and K. B. Beum, “A modified flux regulation method to minimize switching frequency and improve DTC-hysteresis-based induction machines in low-speed regions,” IEEE Trans. Emerg. Sel. Topics Power Electron., vol. 7, no. 4, pp 2346-2355, Dec. 2019.
[50] H. Makino, T. Kosaka, and N. Matsui, “Control performance comparisons among three types of instantaneous current profiling technique for SR motor,” IET Proc. PEMD., pp. 1-6, 2014.
[51] I. Manolas, G. Papafotiou, and S. N. Manias, “Sliding mode PWM for effective current control in switched reluctance machine drives,” in Proc. IEEE IPEC., 2014, pp. 1606-1612.
[52] J. Ye, P. Malysz, and A. Emadi, “A fixed-switching-frequency integral sliding mode current controller for switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 3, no. 2, pp. 381-394, Jun. 2015.
F. Speed Control
[53] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, Dec. 1997.
[54] C. Lucas, M. M. Shanehchi, P. Asadi, and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, vol. 3, 2000. pp. 1573-1577.
[55] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive,” IET Proc. Electric Power Appl., vol. 148, no. 4, pp. 345-352, 2001.
[56] G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” in Proc. IEEE IAS, 1995, vol. 1, pp. 263-270.
[57] A. Karami-Mollaee, “Sliding mode control of switch reluctance motor without chattering,” in Proc. IEEE ICEE, 2013, pp. 1-5.
[58] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
[59] S. K. Sahoo, S. K. Panda, and J. X. Xu, “Application of spatial iterative learning control for direct torque control of switched reluctance motor drive,” in Proc. IEEE PES, 2007, pp. 1-7.
G. Switch-Mode Rectifiers
[60] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, May. 2003.
[61] S. H. Li and C. M. Liaw, “Modelling and quantitative direct digital control for a DSP-based soft-switching-mode rectifier,” IEE Proceedings, Electric Power Appl., vol. 150, no. 1, pp. 21-30, Jan. 2003.
[62] A. J. Sabzali, E. H. Ismail, M. A. Al-Saffar, and A. A. Fardoun, “New bridgeless DCM Sepic and Ćuk PFC rectifiers with low conduction and switching losses,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 873-881, Mar./Apr. 2011.
[63] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, May, 2008.
[64] Y. C. Chang and C. M. Liaw, “A flyback rectifier with spread harmonic spectrum,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4693-4707, Aug. 2011.
[65] H. Valipour, M Mahdavi, and M. Ordonez, “Resonant bridgeless AC/DC rectifier with high switching frequency and inherent PFC capability,” IEEE Trans. Power Electron., vol. 35, no. 1, pp. 232-246, Jan. 2020.
[66] M. Lee, J. W. Kim, and J. S. Lia, ”Digital-base critical conduction mode control for three-level boost PFC converter,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7689-7701, Jul. 2020.
[67] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, Jun. 2004.
[68] J. W. Kolar and T. Friedli, “The essence of three-phase PFC rectifier systems - Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, Jan. 2013.
[69] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems -Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, Feb. 2014.
H. Energy Storage Systems
[70] V. A. Boicea, “Energy storage technologies: the past and the present,” in Proc. IEEE, vol. 102, no. 11, 2014, pp. 1777-1794.
[71] T. Dragicevic, X. Lu, J. C. Vasquez, and J. M. Guerrero, “DC microgrids- part II: a review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electron., vol. 31, no. 5, pp. 3528-3549, May. 2016.
[72] T. Ma, M. H. Cintuglu, and O. A. Mohammed, “Control of a hybrid AC/DC microgrid involving energy storage and pulsed loads,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 567-575, 2015.
[73] K. W. Hu, Y. Y. Chen, and C. M. Liaw, “An EV SRM drive powered by battery/ supercapacitior with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, Aug. 2015.
[74] P. J. Kollmeyer, M. Wootton, J. Reimer, D. F. Opila, H. Kurera, R. Gu, T. Stience, E. Chemali, M. Wood, and A. Emadi, “Real-time control of a full scale Li-ion battery and Li-ion capacitor hybrid energy storage system for a plug-in hybrid vehicle,” IEEE Trans. Ind Appl. vol. 55, no. 4, pp. 4204-4214, Jul./Aug. 2019.
[75] M. O. Badawy, T. Husain, Y. Sozer, and J. A. D. Abreu-Garcia, “Integrated control of an IPM motor drive and a novel hybrid energy storage system for electric vehicles,” IEEE Trans. Ind. Appl., vol. 53. no. 6, pp. 5810-5819, Nov./Dec. 2017.
[76] K. Itani, A. D. Bernardinis, A. Jammal, “Energy management of a battery-flywheel storage system used for regenerative braking recuperation of an electric vehicle,” in Proc. IEEE IECON, 2016, pp. 2034-2039.
[77] R. Furuta, J. Kawasaki, and K. Kondo, “Hybrid traction technologies with energy storage devices for nonelectrified railway lines,” IEEJ Trans. Elect. Electron. Eng., vol. 5, no. 3, pp. 291-297, Dec. 2009.
[78] M. Hino and D, Hara, “Application of an energy storage system using lithium-ion batteries for more effective regenerative energy utilization,” JR EAST Technical Review., no. 31, Mar. 2014, pp. 23-26.
[79] S. Nategh, A. Boglietti, Y. Liu, D. Barber, R. Brammer, D. Linberg, and O. Aglen, “A review on different aspects of tration motor design for railway applications,” IEEE Trans. Ind Appl.,vol. 56, no. 1, pp. 2148-2157, May/Jun. 2020.
[80] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo, and J. M. Carrasco, “Energy storage systems for transport and grid applications,” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3881-3895, Dec. 2010.
[81] P. Arboleya, P. Bidaguren, and U. Armendariz, “Energy is on board: energy storage and other alternatives in modern light railways,” IEEE Elect. Mag., vol. 4, no. 3, pp. 30- 41, Sep. 2016.
[82] M. Ogasa, “Application of energy storage technologies for electric railway vehicles- examples with hybrid electric railway vehicles,” IEEJ Trans. Elect. Electron. Eng., vol. 5, no. 3, pp. 304-311, Feb. 2010.
[83] T. Ratniyomchai, S. Hillmansen, and P. Tricoli, “Recent developments and applications of energy storage devices in electrified railways,” IET Electr. Syst. Transp., vol. 4, no. 1, Sep. 2014.
[84] D. Iannuzzi and P. Tricoli, “Metro trains equipped onboard with supercapacitors: a control technique for energy saving,” in Proc. IEEE SPEEDAM, 2010, pp. 750-756.
[85] S. Tominaga, I. Suga, H. Araki, H. Ikejima, M. Kusuma, and K. Kobayashi, “Development of energy-saving elevator using regenerated power storage system,” in Proc. IEEE PCC- Osaka, vol. 2, 2002, pp. 890-895.
[86] N. Jabbour, C. Mademlis, and I. Kioskeridis, “Improved performance in a supercapacitor- based energy storage control system with bidirectional dc-dc converter for elevator motor drives,” in Proc. IET PEMD, 2014, pp. 1-6.
[87] K. Kafalis and A. D. Karlis, “Comparison of flywheels and supercapacitors for energy saving in elevators,” in Proc. IEEE IAS, 2016, page 1-8.
[88] N. Jabbour and C. Mademlis, “Improved control strategy of a supercapacitor-based energy recovery system for elevator applications,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8398-8408, Dec. 2016.
[89] R. G. Lawrence, K. Craven, and G. D. Nichols, “Flywheel UPS,” IEEE Ind. Appl. Mag., vol. 9, no.3, pp. 44-50, May/Jun. 2003.
[90] S. Ohn, J. Yu, R. Burgos, D. Boroyeich, and H. Suryanarayana, “Reduced common-mode voltage PWM scheme for full-SiC three-level uninterruptible power supply with small DC-link capacitors,” IEEE Trans. Power Electron., vol. 35, no. 8, pp. 8638-8651, Aug. 2020.
[91] A. Kusko and J. Dedad, “Short-term and long-term energy storage methods for standby electric power systems,” IEEE Trans. Ind. Appl., vol. 13, no.4, pp. 66-72, 2005.
[92] H. H. Abdeltawab and Y. A. I. Mohamed, “Robust energy management of a hybrid wind and flywheel energy storage system considering flywheel power losses minimization and grid- code constraints,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4242-4254, Jul. 2016.
[93] B. H. Kenny, P. E. Kascak, R. Jansen, T. Dever, and W. Santiago “Control of a high-speed flywheel system for energy storage in space applications,” IEEE Trans. Ind. Appl., vol. 41, no. 4, pp. 1029-1038, Jul./Jun. 2005.
[94] R. Arghandeh, M. Pipattanasomporn, and S. Rahman, “Flywheel energy storage systems for ride-through applications in a facility microgrid,” IEEE Trans. Smart Grid., vol. 3, no. 4, pp. 1955-1962, Dec. 2012.
[95] J. Itoh, D. Sato, T. Nagano, K. Tanaka, N. Yamada, and K. Kato, “Development of high efficiency flywheel energy storage system for power load-leveling,” in Proc. IEEE INTELEC, 2014, page 1-8.
[96] J. Itoh, T. Nagano, K. Tanaka, K. Orikawa, and N. Yamada “Development of flywheel energy storage system with multiple parallel drives,” in Proc. IEEE Energy Convers., 2014, pp. 4568-4575.
[97] W. Gruber, T. Hinterdorfer, H. Sima, A. Schulz and J. Wassermann, “Comparison of different motor-generator sets for long term storage flywheels,” in Proc. IEEE Power Electron, Electrical Drives, Automation and Motion., 2014, pp. 161-166.
[98] G. Cimuca, S. Breban, M. M. Radulescu, C. Saudemont, and B. Robyns, “Design and control strategies of an induction-machine-based flywheel energy storage system associated to a variable-speed wind generator,” IEEE Trans. Energy Convers., vol. 25, no. 2, pp. 526-534, Jun. 2010.
[99] J. L. da S. Neto, R. de Andrade Jr., L. G. B. Rolim, A. C. Ferreira, G. G. Sotelo, W. Suemitsu, “Experimental validation of a dynamic model of a SRM used in superconducting bearing flywheel energy storage system,” in Proc. IEEE ISIE, Jul. vol. 3, 2006, pp. 2492-2497.
[100] E. Bernsmüller, L. G. B. Rolim, and A. C. Ferreira, “External rotor switched reluctance machine for a kinetic energy storage system,” in Proc. IEEE IECON, 2016, pp. 1636-1641.
[101] J. Sun, Z. Kuang, S. Wang, and Y. Chen, “Efficiency optimal control of switched reluctance machine over wide speed range applied to flywheel energy storage system,” in Proc. IEEE EML, 2012, pp. 1-6.
I. Interface Converters
[102] F. Caricchi, F. Crescimbini, G. Noia, and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC, 1994, vol. 1, pp. 381-389.
[103] N. Mohan, T.M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
[104] E. Hiraki, K. Hirao, T. Tanaka, and T. Mishima, “A push-pull converter based bidirectional DC-DC interface for energy storage systems,” in Proc. IEEE EPE, 2009, pp. 1-10.
[105] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC–DC converter for a battery energy storage system,” IEEE Trans. Power. Electron., vol. 27, no. 3, pp. 1237-1248, Mar. 2012.
[106] A. A. Fardoun, E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “Bi-directional converter with low input/output current ripple for renewable energy applications,” in Proc. IEEE ECCE, 2011, pp. 3322-3329.
[107] Z. Zhang, O. C. Thomsen, and M. A. E. Andersen, “Optimal design of a push-pull-forward half-bridge (PPFHB) bidirectional dc–dc converter with variable input voltage,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp.2761-2771, Jul. 2012.
[108] S. S. Williamson, A. K. Rathore, and F. Musavi, “Industrial electronics for electric transportation: current state-of-the-art and future challenges,” IEEE Trans. Ind. Electron., vol. 62, no. 5, pp. 3021-3032, May, 2015.
[109] M. A. Khan, A. Ahmed, I. Husain, Y. Sozer, and M. Badawy, “Performance analysis of bidirectional dc-dc converters for electric vehicles,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3442-3452, Jul./Aug. 2015.
[110] T. Dragičević, X. Lu, J. C. Vasquez, and J. M. Guerrer, “DC microgrids—Part II: A review of power architectures, applications, and standardization issues,” IEEE Trans. Power Electronics., vol. 31, no. 5, pp.3528-3549, 2016.
[111] A. Mallik and A. Khaligh, “Variable-switching-frequency state-feedback control of a phase-shifted full-bridge DC/DC converter,” IEEE Trans. Power Electron., vol. 32, no. 8, pp. 6523-6531, Aug. 2017.
[112] M. Forouzesh, Y. P. Siwakoti, S. A. Gorji, F. Blaabjerg, and B. Lehman, “Step-up DC–DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications,” IEEE Trans. Power Electron., vol. 32, no. 12, pp. 9143-9178, Dec. 2017.
J. Resonant DC/DC converter
[113] W. Chen, P. Rong, and Z. Lu, “ Snubberless bidirectional DC-DC converter with new CLLC resonant tank featuring minimized switching loss,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3075-3086, Sep. 2010.
[114] N. Radimov, R. Orr, and T. K. Gachovska, “Bi-directional CLLC front-end for off-grid battery inverters,” in proc. IEEE IHTC, 2015, pp. 1-4.
[115] W. L. Malan, D. M. Vilathgamuwa, and G. R. Walker, “Modeling and control of a resonant dual active bridge with a tuned CLLC network,” IEEE Trans. Power Electron., vol. 31, no. 10, pp. 7297-7310, Oct. 2016.
[116] C. Liu, J. Wang, K. Colombage, C. Gould, and B. Sen, “A CLLC resonant converter based bidirectional EV charger with maximum efficiency tracking,” in proc. IET PEMD, 2016, pp. 1-6.
[117] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J. S. Lai, “Design of bidirectional DC–DC resonant converter for vehicle-to-grid (V2G) applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 232-244, Oct. 2015.
[118] J. H. Jung, H. S. Kim, M. H. Ryu, and J. W. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, Apr. 2013.
[119] A. Sankar, A. Mallik, and A. Khaligh, “Extended harmonics based phase tracking for synchronous rectification in CLLC converters,” IEEE Trans. Ind. Electron., vol. 66, no. 8, pp. 6592-6603, Aug. 2019.
[120] R. Emamalipour and J. Lam, “A hybrid string-inverter/rectifier soft-switched bidirectional DC/DC converter,” IEEE Trans. Power Electron, vol. 35, no. 8, pp. 8200-8214, Aug. 2020
[121] A. Ahmad, M. S. Alam, and R. Chabaan, “A comprehensive review of wireless charging technologies for electric vehicles,” IEEE Trans. Power Electron., vol. 4, no. 1, pp. 38-63, Mar. 2018.
K. Others
[122] C. S. Li, “Bidirctional three-phase switch-mode rectifier fed switched-reluctance motor drive with hybrid energy storage support,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, Hsinchu, ROC, 2017.