簡易檢索 / 詳目顯示

研究生: 謝宏昇
Hsieh, Hong-Sheng
論文名稱: 利用矽波導非線性現象 FCD與 XPM效應達到全光性訊號重建
All-Optical Regenerator Based on Free-Carrier Dispersion and Cross-Phase Modulation in Silicon Waveguide
指導教授: 李明昌
Lee, Ming-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 59
中文關鍵詞: 自相位調變交錯相位調變雙光子吸收
外文關鍵詞: SPM, XPM, TPA
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    在光纖通訊中,光訊號會因為在傳輸過程中增加額外的雜訊以及因為色散造成光訊號失真。也因此,訊號重建是光通訊非常重要的課題之一。本文中我們利用了許多矽波導的非線性現象達到訊號重建;像是XPM、X-TPA、FCD以及FCA,說明了矽波導是可以做為全光式訊號重建系統的元件。
    一般來說,利用矽的非線性現象做為主動或被動光學元件的發展以及應用性,常因為TPA以及所引發的FC效應而受限,儘管矽這個材料在天生上擁有非常多優越的光學性質。
    在此論文中,我們提出了以矽波導取代高度非線性色散光纖做為訊號重建的元件,除了利用XPM產生頻譜的位移外,並模擬分析出自由載子生命週期長短對頻譜位移的影響,更利用傳統玻璃光纖所缺乏的X-TPA、FCA和FCD等非線性效應以及光學濾波器使訊號品質改善。
    模擬的結果說明了若能有效的控制自由載子生命週期至30ps,的確是可以利用長度僅僅1cm的矽波導取代長度750m的高度非線性色散光纖做為全光式訊號重建系統的元件,同時有機會整合到一片非常小的晶片中。


    摘要 2 Abstract 3 致謝 4 目錄 5 第一章 緒論 6 1.1 前言 6 1.2 研究動機與目的 8 1.3 論文架構 10 第二章 矽波導的非線性現象 11 2.1 矽材料簡介 11 2.2 矽波導的色散現象 13 2.3 自相位調變﹝self-phase modulation﹞ 17 2.4 交錯相位調變﹝cross-phase modulation﹞ 21 2.5 雙光子吸收﹝Two-photon absorption﹞與其影響 22 2.4.1雙光子吸收﹝two-photon absorption﹞ 22 2.4.2自由載子影響﹝Free-carrier effects﹞ 23 第三章 全光式訊號重建 30 3.1 模擬模型與數值方法 30 3.1.1非線性薛丁格方程式﹝nonlinear Schrödinger equation﹞ 30 3.1.2數值方法 33 3.2 全光式訊號重建架構與原理 35 3.3 模擬結果與分析 36 3.4 全光式訊號重建 43 3.4.1訊號品質Q、OSNR以及ER的定義 43 3.4.2全光式訊號重建模擬結果與分析 44 第四章 結論與展望 50 附錄(一)程式碼 51 附錄(二)中英縮寫對照表 57 參考文獻 58

    1 Mamyshev, P. V. in Optical Communication, 1998. 24th European Conference on. 475-476 vol.471.
    2 Provost, L. A., Finot, C., Petropoulos, P., Mukasa, K. & Richardson, D. J. Design scaling rules for 2R-optical self-phase modulation-based regenerators. Opt. Express 15, 5100-5113 (2007).
    3 Suzuki, J., Tanemura, T., Taira, K., Ozeki, Y. & Kikuchi, K. All-optical regenerator using wavelength shift induced by cross-phase modulation in highly nonlinear dispersion-shifted fiber. Photonics Technology Letters, IEEE 17, 423-425 (2005).
    4 Dinu, M., Quochi, F. & Garcia, H. Third-order nonlinearities in silicon at telecom wavelengths. Applied Physics Letters 82, 2954-2956 (2003).
    5 Salem, R. et al. All-optical regeneration on a silicon chip. Optics Express 15, 7802-7809 (2007).
    6 Salem, R. et al. Signal regeneration using low-power four-wave mixing on silicon chip. Nat Photon 2, 35-38 (2008).
    7 Koonath, P., Solli, D. R. & Jalali, B. Limiting nature of continuum generation in silicon. Applied Physics Letters 93, doi:10.1063/1.2977872 (2008).
    8 Foster, M. A., Turner, A. C., Lipson, M. & Gaeta, A. L. Nonlinear optics in photonic nanowires. Optics Express 16, 1300-1320 (2008).
    9 Boyraz, O., Indukuri, T. & Jalali, B. Self-phase-modulation induced spectral broadening in silicon waveguides. Opt. Express 12, 829-834 (2004).
    10 Hsieh, I. W. et al. Cross-phase modulation-induced spectral and temporal effects on co-propagating femtosecond pulses in silicon photonic wires. Opt. Express 15, 1135-1146 (2007).
    11 Claps, R., Dimitropoulos, D., Raghunathan, V., Han, Y. & Jalali, B. Observation of stimulated Raman amplification in silicon waveguides. Opt. Express 11, 1731-1739 (2003).
    12 Yin, L., Lin, Q. & Agrawal, G. P. Soliton fission and supercontinuum generation in silicon waveguides. Opt. Lett. 32, 391-393 (2007).
    13 Lin, Q., Painter, O. J. & Agrawal, G. P. Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt. Express 15, 16604-16644 (2007).
    14 Bristow, A. D., Rotenberg, N. & van Driel, H. M. Two-photon absorption and Kerr coefficients of silicon for 850-2200 nm. Applied Physics Letters 90, doi:19110410.1063/1.2737359 (2007).
    15 Hsieh, I. W. et al. Supercontinuum generation in silicon photonic wires. Opt. Express 15, 15242-15249 (2007).
    16 Dekker, R., Usechak, N., Forst, M. & Driessen, A. Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides. Journal of Physics D-Applied Physics 40, R249-R271, doi:10.1088/0022-3727/40/14/r01 (2007).
    17 Yin, L. H. & Agrawal, G. P. Impact of two-photon absorption on self-phase modulation in silicon waveguides. Optics Letters 32, 2031-2033 (2007).
    18 Dimitropoulos, D., Jhaveri, R., Claps, R., Woo, J. C. S. & Jalali, B. Lifetime of photogenerated carriers in silicon-on-insulator rib waveguides. Applied Physics Letters 86, doi:10.1063/1.1866635 (2005).
    19 Tanabe, T. et al. Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities. Applied Physics Letters 90, doi:10.1063/1.2431767 (2007).
    20 Tien, E. K., Yuksek, N. S., Qian, F. & Boyraz, O. Pulse compression and modelocking by using TPA in silicon waveguides. Optics Express 15, 6500-6506 (2007).
    21 Soref, R. A. & Bennett, R. R. Electro optical effects in Silicon. IEEE Journal of Quanum Electronics 32, 123-129 (1987).
    22 Dekker, R. et al. Ultrafast Kerr-induced all-optical wavelength conversion in silicon waveguides using 1.55 ?m femtosecond pulses. Opt. Express 14, 8336-8346 (2006).
    23 Xu, Q., Almeida, V. & Lipson, M. Time-resolved study of Raman gain in highly confined silicon-on-insulator waveguides. Opt. Express 12, 4437-4442 (2004).
    24 De Leonardis, F. & Passaro, V. M. N. Modelling of Raman amplification in silicon-on-insulator optical microcavities. New J. Phys. 9, doi:2510.1088/ 1367-2630/9/2/025 (2007).
    25 Agrawal, G. P. Nonlinear Fiber Optics. (2006).
    26 Osgood, J. R. M. et al. Engineering nonlinearities in nanoscale optical systems: physics and applications in dispersion-engineered silicon nanophotonic wires. Adv. Opt. Photon. 1, 162-235 (2009).
    27 Rochette, M., Blows, J. L. & Eggleton, B. J. 3R optical regeneration: an all-optical solution with BER improvement. Opt. Express 14, 6414-6427 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE