簡易檢索 / 詳目顯示

研究生: 吳仁貴
Wu, Ren-Guei
論文名稱: 單一細胞濃度等級之電泳/電層析感測晶片平台開發—類神經細胞之電流應答分析
Development of Chip-Based Electrophoresis/Electrochromatography Platform for Amperometic Sensing and Analyses of PC-12 Cells Response at Single Cell Releasing Level
指導教授: 曾繁根
Tseng, Fan-Gang
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2009
畢業學年度: 98
語文別: 英文
論文頁數: 131
中文關鍵詞: 單一細胞分析毛細管電泳/電層析晶片多壁奈米碳管分離管柱電動力濃縮技術奈微米流體系統
外文關鍵詞: Single cell analysis, Electrokinetic preconcnetration, MWCNTs nanocolumn, Micro/Nano-fluidic system, Electrophoresis / electrochromatography chip
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來在單細胞檢測與分析的領域裡,已由多種類細胞間的反應分析,轉為細胞內胞器或細胞體液的反應分析。另外,也從破壞細胞本體取得樣本的方式,轉為活體細胞即時釋放檢測收集的方式。但不論採用何種方式都會遇到樣本量不足(zmole)造成濃度過低難以檢測,或是體積量太少(pL)難有適當的操控介面造成樣本流失,因此一即時濃縮與收集的技術發展便是一大關鍵。同時,唯有將操控尺度微小化以及具有高分離效率與高靈敏的檢測分析技術,方可達成單一細胞研究之目的。
    故本研究主要目的為建構一可檢測至單一細胞濃度等級之晶片式細胞分子操控分析平台,用來觀察與量測在細胞受到外加的物理性與化學性的刺激後,所釋放出的訊息分子的成分與數量。研究中,利用從老鼠體內培養出的類神經細胞(PC-12 Cell)來當做研究樣本,該細胞可分化出神經細胞具有的功能性特徵(軸突與突觸),同時在接受到外在刺激之後會釋放出神經傳導因子。與傳統必須溶解細胞取得大量生物樣本且只著重在捉取、培養或是檢測訊號的生物晶片不同的是,本晶片平台的優勢為在不須溶解細胞的情況下,發展成高分離效率與高靈敏的檢測技術之微全分析系統,並具有對極微量的生物分子進行純化、收集、濃縮、分離與檢測等多功能處理系統。
    在本研究中發展了三各不同功能的晶片系統,並進行整合為一操控分析平台,分別為純化與收集晶片,濃縮與分離晶片以及檢測晶片。實驗結果顯示,利用此整合晶片平台可達成一具有高解析效能的分離理論板數(3.8×105 plants/m)、高效率的樣本濃縮能力(105 folds in 15min)以及超微量的檢測濃度極限值(1.6 zmol, 10-21)之分析系統。 未來可望能夠應用於在單一細胞之間內所釋放之微量(ng-pg)蛋白質、DNA以及神經傳導因子等生物分子的操控與分析。


    CONTENTS ABSTRACT…………………………………………………………………….………..…I ABSTRACT IN CHINESE…………………………………………………….….…….IV ACKNOWLEDGMENTS……………………………………………………………….VI CONTENTS…………………………………………………………………….……….VII LIST OF FIGURES………………………………………………….……………………X NOMENCLATURE………………………………………………..……….………….XIV CHAPTER I Introduction for Single Cell Analysis....………………………………………………1 1.1 Rationale for Single Cell Analysis………………………………………………….2 1.1.1 Background and Development..………...….……………….…………...........2 1.1.2 Specifications and Challenges………………………..………….…………....6 1.2 Single-Cell Manipulation………..…………………………………..……………...8 1.2.1 Sampling and Filtration.………...………………….…….……..…………….8 1.2.2 Preconcentration………………………….………………………………….11 1.3 Single-Cell Analysis……………………………………………………………….13 1.3.1 Fluorescence Method....…………………..……………….…….…………..13 1.3.2 Amperometry Method……………………….………………………………14 1.3.3 Mass Spectrometry Method………….………………………………………15 CHAPTER II Concept and Methodology of Thesis………………………………..……….………20 2.1 Construction of Sampling and Filtration……….………..………………...…...27 2.1.1 Capillary Electrochromatography (CEC)……………………………………28 2.2 Construction of Preconcentration and Ionic Separation………….…….……..31 2.2.1 Characterization of Nanofluidic Preconcentraton…………………………32 2.3 Construction of Restacking and Detection………………………………….……..35 2.3.1 Mass Transfer and Diffusion Controlled Electrochemical Reaction………36 CHAPTER III Chip-Based Capillary Electrochromatography (μCEC) Consist of Vertically Aligned Carbon Nanotubes (CNTs) Nanostructured Pillars for Single Cell Sampling………………………………………………………………………………39 3.1 Introduction ………………………………………………………………….…40 3.2 Materials and Methods…………………………………………………………..47 3.3 Results and Discussion………………………….……...….….….……………..52 3.3.1 Electrophoresis Characteristics of MWCNTs Array Channel……………56 3.3.2 Capillary Electrochromatography of dsDNAs……………………………59 3.4 Conclusions.………………………………………………..…………….… 62 CHAPTER IV Electrostatic Sieving Control of Biomolecules in Nanofluidic Multi-Wall Carbon Nanotubes Array Preconcentrator for Single Cell Preconcentration………63 4.1 Introduction……………………………………………………………………..64 4.2 Materials and Methods……………………………………………………..……69 4.3 Results and Discussion…………………………………………………….…….74 4.3.1 Concentration Polarization at the Nanoporous Size Exclusion Membrane..74 4.3.2 Electrokinetic Concentration and Separation of Protein….…….………….79 4.3.3 Electric Field Strength Effects on the Protein Concentration….………….83 4.4 Conclusions…………………….……………………………………...………..86 CHAPTER V Dual-Asymmetry Electrokinetic Flow (DAEKF) Focusing for Restacking and Analysis of Neurotransmitters at Single Cell Releasing Level in CEEC Nanochannels………………………………………………………………………....87 5.1 Introduction……………………………………………………………………..88 5.2 Materials and Methods……………………………………………………..……93 5.3 Results and Discussion…………………………………………………….…….100 5.3.1 Simulations of the DAEKF Technique in the Nanochannel…...101 5.3.2 Flow Characterization and Analyte Concentration for the DAEKF System………………………......................................................106 5.3.3 DAEKF System for Separation and Electrochemical Detection of Catecholamine...…….……………………………….…………….…110 5.3.4 Efficiency and Detection Limit of Neurotansmitters by the DEFKE CEEC Nanochip……….…………………………………………………………..113 5.4 Conclusions…………………….……………………………………...………..117 CHAPTER VI Conclusion…………………………………………………………………………...118 6.1 Overview of Dissertation …………………………………..…………………...119 6.2 Future Direction …………………………………………….…..…..........….....121 REFERENCES………………….……………………………………………………....122 LIST OF FIGURES Page Fig. 1.1 A schematic representation of the “whole cellomics” research challenge……….5 Fig. 1.2 Generic workflow for single-cell analysis on a microfluidic platform…………..5 Fig. 1.3 (A) Detection of d-Asp in the processes of sensory neurons. (B) (a) SEM images of a microinjector. (b) SEM images of the tip of microinjector (c) Electropherogram of a 280-fL sample injected from a 20 μm diameter PC12 cell obtained using a 770-nm i.d. capillary……………….……………………….10 Fig. 1.4 (A) Membrane schematic and background-corrected images of protein concentration (B) Preconcentration, elution, and separation of proteins in membrane based microchip……………………………………………………..12 Fig. 1.5 (A) Traditional Microdialysis coupled to CE bioreaction chamber with a LIF detector. (B) Electrophoretic separation of the contents of a single cell in a microchannel……………………………………………………………………17 Fig. 1.6 A traditional CE equipped with a bienzyme electrode………………………18 Fig. 1.7 Microfluidic chip integrated with CFNE. (A) Layout of the chip. (B) Configuration of electrophoresis system with an integrated electrochemical detector…………………………………………………………………………18 Fig. 1.8 Overall design of the coupling of the microwell plate sample delivery system equipped with a microdevice for high-throughput separation–MS analysis……19 Fig. 2.1 Schematic of one idealized total-cell analysis device showing the various functions………………………………………………………………………...25 Fig. 2.2 Chip based Micro-Total-Analysis-System (μTAS) for single cell analysis…..25 Fig. 2.3 Fabrication process (a-f) and photographic top view of a multi-functional micro/nano-fluidic chip for singlecell analysis…………………………………26 Fig. 2.4 The chip design and HI-CEC for sampling and filtration of biomolecules analysis at single cell releasing level………..………………….………………………..30 Fig. 2.5 The chip design and nanofluidic preconcentrator for sample preconcentration and ionic separation of biomolecules analysis at single cell releasing level…..........34 Fig. 2.6 The chip design and nanofluidc redox current ampilified for sample restacking and detection of of biomolecules analysis at single cell releasing level……......38 Fig. 3.1 Schematic setups and images of μCEC chip with vertically aligned MWCNTs nanostructured pillars……………………………………………………….45 Fig. 3.2 Fabrication process (a–f) of an MWCNTs chromatographic column for μCEC, (g) Photographic top view of the μCEC chip……………………….51 Fig.3.3 IR spectra obtained for the (a) MWCNTs, (b) O2-MWCNTs, and (c) PDDA-MWCNTs used for channel inner surface modifications………….55 Fig. 3.4 Influence of pH level on the electrophoretic mobility of the electroosmotic flow in pyrex/silicon channels with different modifying condition…………………55 Fig. 3.5 Sample bands moving through (a) the pyrex/silicon channel and (b) the MWCNTs array channel………………………………………………………..58 Fig. 3.6 The μCEC analysis of three dsDNA fragments with different lengths (1: 254 bp, 2: 360 bp, 3: 572 bp) in (a) a pyrex/silicon channel, (b) an O2-MWCNTs array channel, (c) an PDDA-MWCNTs array channel…………………………..........61 Fig. 4.1 Schematic illustration of electrokinetic transport processes (fig. 4.1b) in the microfluidic device containing an in-situ growth, controllable surface charged MWCNTs array preconcentrator (fig. 4.1.a) with a mean pore size comparable to the electrical double layer (EDL) thickness (fig. 4.1c)……………………….. 68 Fig. 4.2 Schematic setups and images of the parylene-MWCNTs preconcentrator in electrostatic sieving micro/nano-fluidic chip………………………………73 Fig. 4.3 Parylene-MWCNTs array electrodes were applied a critical voltage for cathodic electrostatic sieving is -20V. (I) polarizes field on, (II-III) polarizes field off. This device has both the size exclusion and the electrostatic sieving function for Rabbit IgG-FITC and FITC dye.………………………………………………..77 Fig. 4.4 Parylene-MWCNTs array electrodes were applied a critical voltage for anodic electrostatic sieving is +20V. (a) the counterion analyte (2-NBD-Glucose, negative charge), and (b) the coion analyte (Rhodamine 6G) were separatied by electrostatic sieving parylene-MWCNTs preconcentrator……………………...78 Fig. 4.5 Concentration of FITC-labeled BSA with same voltage configuration in figure 4.3. Three different initial concentration samples are presented..………………82 Fig. 4.6 10 nM FITC-labeled protein concentration profile with different applied voltages. The concentrations of protein by different applied voltages are not the same at the same product of applied voltage and time…………………………………85 Fig.5.1 The schematics of (a) flow field evolution for DAEKF in a capillary electrophoresis nanochannel (solid black arrows represent analyte flow direction, and ζ2>ζ1>ζ3>ζ0), and the distribution of analytes in (b) the CE nanochannel with DAEKF, and in (c) the traditional CE nanochannel……………………. 92 Fig. 5.2 Schematics and images of (a) the driving system for the DAEKF CEEC nanochannel chip, (b) the DAEKF and detection region (G: Field-Effect electrodes, W: working electrode, R: reference electrode, C: counter electrode, D: decoupler electrode), and (c) the nanochannel………………………………99 Fig. 5.3 Numerical simulations of the CEEC systems with (a) traditional EOF, (b) asymmetric EOF, (c) traditional EOF combined with field-effect control, (d) asymmetric EOF combined with field-fffect Control (or DAKEF).….104 Fig. 5.4 Detail flow fields of five different regions (a) are revealed in (b) for DAEKF system in nanochannel…………………………………………………………108 Fig. 5.5 Fluorescence image of Rhodamine B for (a) traditional EOF in a nanochannel, (b) the restacking effect by the DAEKF system in a nanochannel, in the five different regions defined in Fig. 5.4 (a)……………………………………… 109 Fig. 5.6 Detection of 1 □M dopamine and catechol in a 500 nm CEEC nanochannel under four different electrokinetic conditions A: asymmetric EOF combined with field-effect control (DAEKF), B: traditional EOF combined with field-effect control, C: asymmetric EOF, D: traditional EOF)…………………………… 112 Fig. 5.7 Electropherograms obtained using a solution of 1.25 nM Dopamine and 3.3 nM catechol in 5mM HEPES buffer in the nanochannel…………………………..115 Fig. 5.8 Demonstration that analytes present at concentrations close to the limit of detection can be analyzed in a cell culture medium. Condition: cell culture medium only, as background noise (gray line); 10 nM Dopamine and catechol in cell culture medium using the DAKEF CEEC nanochannel (black line)……..116

    Reference
    (1) Ali J. E., Sorger P. K., and Jensen1 K. F., Nature 2006, 442, 403-411.
    (2) Carlo D. D., Lee L. P., Anal. Chem. 2006, 78, 7918–7925.
    (3) Rupak D., and Philip J. R., Lab Chip 2008, 8, 1774–1778.
    (4) Lu X., Huang W. H., Wang Z. L., Cheng J. K., Analytica Chimica Acta. 2004, 510,
    127–138.
    (5) Kasicka V., Electrophoresis 2006, 27, 142–175.
    (6) Sims C. E., and Allbritton N. L., Lab Chip 2007, 7, 423–440.
    (7) Andersson H., van den Berg, A., Curr. Opin. Biotechnol. 2004, 15, 44–49.
    (8) Andersson H., van den Berg, A., Sens. Actuators B 2003, 92, 315–325.
    (9) Chao T. C., and Ros A., J. R. Soc. Interface 2008, 5, 139–150.
    (10) Bossi A., Piletsky S. A., Righetti P. G., Turner P. F., Journal of Chromatography A 2000, 892, 143–153.
    (11) Spegel C., Heiskanen A., Skjolding H. D., Emneus J., Electroanalysis 2008, 6, 680-702.
    (12) Huang W. H., Shen H., Pang D. W., Wang Z. L., Cheng J. K., Chin. Sci. Bull. 2000, 45, 289-294.
    (13) Zhang Z., Krylov S. N., Arriaga E. Polakowski A., R. Dovichi N. J., Anal. Chem. 2000, 72, 318–322.
    (14) Berridge M. J., Bootman M. D., Roderick H. L., Nat. Rev. Mol. Cell. Biol. 2003, 4, 517–529.
    (15) Fink L., Kwapiszewska G., Wilhelm J., Bohle R. M., Exp. Toxicol. Pathol. 2006, 57, 25–29.
    (16) Nilsson S., Carlsson J., Larsson B., Ponten J., Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1980, 37, 267–279.
    (17) Voldman J., Gray M. L., Toner M., Schmidt M. A., Anal. Chem. 2002, 74, 3984-3990.
    (18) Chen S., Lillard S. J., Anal. Chem. 2001, 73, 111–118.
    (19) Miao H., Rubakhin S. S., Sweedler J. V., Anal. Chem. 2005, 77, 7190-7194.
    (20) Woods L. A., Gandhi P. U., Ewing A. G., Anal. Chem. 2005, 77, 1819-1823.
    (21) Inoue I.,Wakamoto Y., Moriguchi H., Okano K., Yasuda K., Lab Chip 2001, 1, 50–55.
    (22) Song S., Singh A. K., Kirby B. J., Anal. Chem. 2004, 76, 4589-4592.
    (23) Kim, L., Toh, Y. C., Voldman, J., Yu, H., Lab Chip 2007, 7, 681–694.
    (24) Wang T. H., Peng Y. H., Zhang C. Y., Wong P. K., Ho C. M., J. Am. Chem. Soc. 2005, 127, 5354-5359.
    (25) Kim S. M., Burns M. A., Hasselbrink E. F., Anal. Chem. 2006, 78, 4779-4785.
    (26) K. Fuller, E. Arriaga, Anal. Chem. 2003, 75, 2123-2130.
    (27) Turner E. H., Lauterbach K., Pugsley H. R., Palmer V. R., Dovichi N. J., Anal. Chem. 2007,79, 778-781.
    (28) Gunasekera N., Olson K. J., Arriaga E. A., Anal. Chem. 2004, 76, 655-662.
    (29) Sun X., Jin W., Li D., Bai Z., Electrophoresis 2004, 25, 1860-1866.
    (30) Holland L. A., Leigh A. M., Electrophoresis 2002, 23, 3649 – 3658.
    (31) Westerink1 R. H. S., Ewing A. G.., Acta Physiol (Oxf). 2008, 192, 273–285
    (32) Wang J., Li M., Shi Z., Li N., Gu Z., Anal. Chem. 2002, 74 (9), 1993-1997
    (33) Cheng H., Huang W. H., Chen R. S., Wang Z. L., Cheng J. K. Electrophoresis 2007, 28, 1579–1586
    (34) Hummon A. B., Sweedler J. V., Corbin R. W.., Trends in Analytical Chemistry 2003, 22, 515-521.
    (35) Aebersold R., Mann M., Nature 2003, 422, 198-207.
    (36) Ros A., Hellmich W., Regtmeier J., Duong T. T., Anselmetti D., Electrophoresis 2006, 27, 2651-2658.
    (37) Li J., Kelly J. F., Chemushevich I., Harrison D. J., Thibault P., Anal. Chem. 2000, 72, 599-609.
    (38) Lantz A. W., Bao Y., and Armstrong D. W., Anal. Chem. 2007, 79, 1720-1724
    (39) Marcus J. S., Anderson W. F., Quake S. R., Anal. Chem. 2006, 78, 956–958.
    (40) Lichtenberg J., de Rooij N. F., Verpoorte E., Electrophoresis 2002, 23, 3769–3780.
    (41) Klauke N., Smith G., Cooper J. M., Lab Chip 2007, 7, 731-739.
    (42) Wei C. W., Cheng J. Y., Young T. H., Biomed. Microdevices 2006, 8, 65-71.
    (43) Price A. K., Culbertson C. T., Anal. Chem. 2007, 79 , 2615-2621.
    (44) Pumera M., Talanta 2005, 66, 1048–1062.
    (45) Ericson C., Holm J., Ericson T., and Hjerte´n S., Anal. Chem. 2000, 72, 81-87.
    (46) Stachowiak T. B., Svec F., Fréchet M. J., J. Chromatogr. A 2004, 1044, 97–111.
    (47) Wu R., Hu L., Wang F., Ye M., Zou H., Journal of Chromatogr. A 2008, 1184, 369–392
    (48) Issaq H. J., Chan K. C., Blonder J., Ye X., Veenstra T. D., Journal of Chromatography , 2009, 1216, 1825–1837
    (49) Schaller D., Hilder E. F., Haddad P. R., J. Sep. Sci. 2006, 29, 1705-1719.
    (50) Dittrich, P. S. and Schwille, P., Anal. Chem. 2003, 75, 5767–5774.
    (51) McClain, M. A., Culbertson, C. T., Jacobson, S. C., N. L. Allbritton, Sims, C. E., Anal. Chem. 2003, 75, 5646–5655.
    (52) Tung, Y. C., Zhang, M., Lin, C. T., Kurabayashi, K. and Skerlos, S. J., Sens. Actuators B 2004, 98, 356–367.
    (53) Holtzel A., Tallarek U., J. Sep. Sci. 2007, 30, 1398 – 1419
    (54) Chu K. T. and Bazant M. Z.., Phys. Rev. E 2006, 74, 0115011- 01150125
    (55) Sassa F., Morimoto K., Satoh W., Suzuki H., Electrophoresis 2008, 29, 1787–1800
    (56) Huo Y., and Kok W. Th., Electrophoresis 2008, 29, 80–93.
    (57) Oleschuk R. D., Shultz-Lockyear L. L., Ning Y.B., Harrison D.J., Anal. Chem. 2000, 72, 585–590.
    (58) Stachowiak T. B., and Fréchet M. J., J. Chromatogr. A 2004, 1044, 97–111.
    (59) He B., Tait N., and Regnier F., Anal. Chem. 1998, 70, 3790–3797.
    (60) Slentz B. E., Penner N. A., Lugowska E., Regnier F., Electrophoresis 2001, 22, 3736–3743.
    (61) Knox, J. H., J. Chromatogr. A 2002, 960, 7-18.
    (62) Smet, J. D., Gzil, P., Vervoort, N., Verelst, H., Baron, G. V., Desmet, G., Anal. Chem. 2004, 76, 3716–3726.
    (63) Anna T., Karin E. M., and Leif, M., Analyst 2003, 128, 844–848.
    (64) Cai, Y. Q., Cai, Y. E., Mou, S. F., Lu, Y. Q., J. Chromatogr. A 2005, 1081, 245–247.
    (65) Luong, J. H.T., Bouvrette, P., Liu, Y.L., Yang, D. Q., Sacher, E., J. Chromatogr. A 2005, 1074, 187–194.
    (66) Yuan L. M., Ren C. X., Li L., Ai P., Yan Z. H., Zi M., Li Z. Y., Anal. Chem. 2006, 78, 6384–6390.
    (67) Saridara, C., Mitra, S., Anal. Chem. 2005, 77, 7094–7097.
    (68) Stadermann, M., McBrady, A.D., Dick, B., Reid, V.R., Noy, A., Synovec, R. E., Anal. Chem. 2006, 78, 5639–5644.
    (69) Theemsche, A. V., Gzil, P., Dan, C., Deconinck, J., Smet, J. D., Vervoort, N., Anal. Chem. 2004, 76, 4030-4037.
    (70) Fonverne A., Ricoul F., Demesmay C., Delattre C., Fournier A., Dijon J., Vinet, F., Sens. Actuators B 2008, 129, 510-517.
    (71) Mogensen K. B., Gangloff L., Boggild P., Teo B. K., Milne W. I., Kutter J. P., Nanotechnology 2009, 9, 095503.
    (72) Zhang, R. Y., Amlani, I., Baker, J., Tresek, J., Raymond K. T., Peter F., Nano Letters 2003, 3, 731-735.
    (73) Bourlions A. B., Georgakilas V., Tzitzios V., Boukos N., Herrera R., Giannelis E. P., Small 2006, 10, 1188-1191.
    (74) Gewu L., Gaoquan S. J., Electroanal. Chem. 2006, 586, 154-160.
    (75) Yang J., Pang F., Zhang R., Xu Y., He P., Fang Y., Electroanalysis 2008, 19, 2134 – 2140.
    (76) Kwon S. H., Park J. H., J. Sep. Sci. 2006, 29, 945–952.
    (77) Manz A., Graber N., Widmer H. M., Sens. Actuators B 1990, 1, 244-248.
    (78) Burns M. A., Johnson B. N., Brahmasandra S. N., Handique K., Webster J. R., Mastrangelo C. H., Burke D. T., Science 1998, 282, 484-487.
    (79) Harrison D. J., Fluri K., Seiler K., Fan Z. H., Effenhauser C. S., Manz A., Science 1993, 261, 895-897.
    (80) Schmalzing D., Adourian A., Koutny L., Ziaugra L., Matsudaira P., Ehrlich D., Anal. Chem. 1998, 70, 2303-2310.
    (81) Pal R., Yang M., Lin R., Johnson B. N., Srivastava N., Razzacki S. Z., Chomistek D. T., Burns M. A., Lab Chip 2005, 5, 1024-1032.
    (82) Vanderschoot B. H., Vandenvlekkert H. H., Derooij N. F., Vandenberg A., Grisel A., Sens. Actuators B 1991, 4, 239-241.
    (83) Vandenberg A., Grisel A., Verneynorberg E., Vanderschoot B. H., Koudelkahep M., Derooij N. F., Sens. Actuators B 1993, 13, 396-399.
    (84) Anderson J. R., Chiu D. T., Jackman R. J., Cherniavskaya O., McDonald J. C., Whitesides S. H., Whitesides G. M., Anal. Chem. 2000, 72, 3158-3164.
    (85) Chen X. X., Wu H. K., Mao C. D., Whitesides G. M., Anal. Chem. 2002, 74, 1772-1778.
    (86) Khandurina J., Jacobson S. C., Waters L. C., Foote R. S., Ramsey J. M., Anal. Chem. 1999, 71, 1815-1819.
    (87) Yu C., Davey M. H., Svec, F., Frechet J. M., J. Anal. Chem. 2001, 73, 5088-5096.
    (88) Song, S., Singh, A. K., Kirby B. J. Anal. Chem. 2004, 76, 4589-4592.
    (89) Wang Y. C., Stevens A. L., Han J. Y., Anal. Chem. 2005, 77, 4293-4299.
    (90) Kumar, A., Whitesides, G. M., McDonald, J. C., Chabinyc, M. L., Metallo, S. J., Anderson, J. R., Stroock, A. D., Whitesides, G. M., Anal. Chem. 2002, 74, 1537-1545.
    (91) McDonald J. C., Duffy D. C., Anderson J. R., Chiu D. T., Wu H. K., Schueller O. J. A., Whitesides G. M., Electrophoresis 2000, 21, 27-40.
    (92) Duffy D. C., McDonald J. C., Schueller O. J. A., Whitesides G. M., Anal. Chem. 1998, 70, 4974-4984.
    (93) Folch A., Ayon A., Hurtado O., Schmidt M. A., Toner M. J., Biomechan. Eng.-Trans. ASME 1999, 121, 28-34.
    (94) Ruth Y. Z., Islamshah A., Jeff B., John T., Raymond K. T., Peter F., Nano Letters 2003, 3, 731-735.
    (95) Balss K. M., Vreeland W. N., Howell P. B., Henry A. C., Ross D., J. Am. Chem. Soc. 2004, 126, 1936-1937.
    (96) Sims C. E., Allbritton N. L., Lab Chip 2007, 7, 423–440.
    (97) Andersson. H., van den Berg A., Current Opinion in Biotechnology 2004, 15, 44–49.
    (98) Lu X., Huang W. H., Wang Z. L., Cheng J. K., Analytica Chimica Acta 2004, 510, 127–138.
    (99) Chen Y., Xiong G., Arriaga E. A., Electrophoresis 2007, 28, 2406–2415.
    (100) Arcibal I. G., Santillo M. F., Ewing A. G., Anal. Bioanal. Chem. 2007, 387, 51–57.
    (101) Chu Q., Jiang L., Tian X., Ye J., Analytica Chimica Acta 2008, 606, 246–251.
    (102) Baldessari F., Santiago J. G., Journal of Nanobiotechnology 2006, 4, 1-6.
    (103) Woods L. A., Powell P. R., Paxon T. L., Ewing A. G., Electroanalysis 2005, 17, 1192-1197.
    (104) Wei J., Gostkowski M. L., Gordon M. J., Shear J. B., Anal. Chem. 1998, 70, 3470-3475.
    (105) Kelly R. T., Li Y., Woolley A. T., Anal. Chem. 2006, 78, 2565-2570.
    (106) Pumera M., Merkoci A., Alegret S., Trends in Analytical Chemistry 2006, 25, 219-235.
    (107) Jung B., Bharadwaj R., Santiago J. G., Anal. Chem. 2006, 78, 2319-2327.
    (108) Foote R. S., Khandurina J., Jacobson S. C., Ramsey J. M., Anal. Chem. 2005, 77, 57-63.
    (109) Wang Y. C., Stevens A. L., Han J., Anal. Chem. 2005, 77, 4293-4299.
    (110) Zevenbergen M. A. G., Krapf D., Zuiddam M. R., Lemay S. G., Nano Lett. 2007, 7, 384-388.
    (111) Wolfrum B., Zevenbergen M., Lemay S. G., Anal. Chem. 2008, 80, 972-977.
    (112) Wang J., Pumera M., Chatrathi M. P., Martin R. S., Lunte S. M., Electroanalysis 2002, 14, 1251-1255.
    (113) Ertl P., Emrich C. A., Singhal P., Mathies R. A., Anal. Chem. 2004, 76, 3749-3755.
    (114) Zheng J., Li H. W., Yeung E. S., J. Phys. Chem. B 2004, 108, 10357-10362.
    (115) Schasfoort R. B. M., Schlautmann S., Hendrikse J., van den Berg A., Science 1999, 286, 942–945.
    (116) Qiao R., Aluru N.R., Sens. and Actuators A 2003, 104, 268–274.
    (117) Lee G. B., Fu L. M., Lin C. H., Electrophoresis 2004, 25, 1879–1887 1879.
    (118) Ajdari A., Bontoux N., Stone H.A., Anal. Chem. 2006, 78, 387-392.
    (119) Steen M. L., Hymas L., Havey E. D., Fisher E. R., Journal of Membrane Science 2001,188, 97–114.
    (120) Steen M. L., Hymas L., Jordan A. C., Fisher E. R., Ellen R. F., Journal of Membrane Science 2002, 204, 341–357.
    (121) Berthold A., Nicola L., Sarro P. M., Vellekoop M. J., Sens. and Actuators A 2000, 82, 224–228.
    (122) Andreev, V. P., Dubrovsky S. G., Stepanov Y. V., J. Microcolumn Sep. 1997, 9, 443-450.
    (123) Andreev V. P., Lisin E. E., Chromatographia 1993, 37, 202-210.
    (124) Qiao R., Aluru N. R., J. Chem. Phys 2003, 118, 4692-4701.
    (125) Vickers J. A., Henry C. S., Electrophoresis 2005, 26, 4641–4647.
    (126) Chen C., Hahn J. H., Anal. Chem. 2007, 79, 7182-7186.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE