研究生: |
蔡承瑜 Tsai, Cheng-Yu |
---|---|
論文名稱: |
互聯干擾和維納波動條件下時變延遲和封包遺失的大型團隊編隊無人機網絡系統的隨機強健分散式追蹤控制 Stochastic Robust Decentralized Tracking Control of Large-Scale Team Formation UAV Network System with Time-Varying Delay and Packet Dropout under Interconnected Interference and Wiener Fluctuations |
指導教授: |
陳博現
Chen, Bor-Sen |
口試委員: |
黃志良
Hwang, Chih-Lyang 吳常熙 Wu, Chang-Xi 李征衛 Li, Zheng-Wei 吳建鋒 Wu, Jian-Feng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2020 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 31 |
中文關鍵詞: | 大規模無人機 、分散式控制 、網路控制系統 、編隊控制 、四旋翼飛行器 、互連干擾 |
外文關鍵詞: | large-scale UAV, decentralized control, network control system, formation control, quadrotor, interconnected interference |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這項研究提出了一種強健的分散式追蹤控制方案,用於大型無人機(UAV)編隊網絡控制系統(NCS),以克服由於集中式控制的高計算複雜度而導致不可擴展甚至不可行的設計問題。大型無人機團隊編隊NCS中考慮了風的外部擾動,內在波動以及與其他無人機子系統的耦合。在網絡配置下,設計過程中還考慮了網路引起的時變延遲和封包遺失。此外,本研究還嵌入了事件觸發機制以減少傳輸的控制信號數量,用以節省網路流量,特別是對於大規模團隊編隊 NCS。為了有效減少上述非理想影響,針對大規模無人機NCS,提出了一種強健的H_∞分散式追蹤控制器。大規模無人機編隊NCS由虛擬領導者-跟隨者追蹤網絡無人機子系統所構建。每個無人機子系統的強健分散式團隊編隊追蹤控制設計問題被轉換為每個無人機獨立的Hamilton-Jacobin不等式(HJI)約束的優化問題。通過Takagi-Sugeno(TS)模糊插值方法,可以將大規模無人機編隊NCS的H_∞強健虛擬領導者-跟隨者分散式追蹤控制設計問題轉化為每個無人機的獨立線性不等式(LMI)約束的優化問題,可以通過使用凸優化技術來有效解決。由25架無人機組成的大規模無人機團隊編隊被展示,以驗證所提出針對大型無人機小組NCS的魯棒分散式跟踪控制器的有效性。
A robust decentralized tracking control scheme for a large-scale unmanned aerial vehicle (UAV) formation team networked control system (NCS) is proposed in this study to overcome a non-scalable or even infeasible design problem due to high computational complexity by centralized control. The wind external disturbance, intrinsic fluctuation, and coupling from other UAV subsystems are considered in the large-scale UAV team formation NCS. Under the network configuration, the time-varying network-induced delay and packet dropout are also taken into account in the design procedure. Also, an event-triggered mechanism is embedded to reduce the number of transmitted control signals to save the network traffic especially for a large-scale team formation network in this study. To effectively reduce the above non-ideal effects, a robust H_∞ decentralized tracking controller is proposed for the large-scale UAV network control system. The large-scale UAV team formation NCS is constructed by virtual leader-follower tracking network UAV subsystems. The robust decentralized team formation tracking control design problem of each UAV subsystem is transformed to an independent Hamilton-Jacobin inequality (HJI)-constrained optimization problem for each UAV. By the Takagi-Sugeno (T-S) fuzzy interpolation method, the H_∞ robust virtual leader-follower decentralized tracking control design problem of the large-scale UAV team formation NCS can be transformed to an independent linear inequality (LMI)-constrained optimization problem for each UAV, which can be efficiently solved by using convex optimization techniques. A large-scale UAV team formation of 25 UAVs is shown to validate the effectiveness of the proposed robust decentralized tracking controller of large-scale UAV team formation NCS.
[1] R. Rajkumar, I. Lee, L. Sha and J. Stankovic, “Cyber-physical systems: The next computing revolution,” Design Automation Conference,
Anaheim, CA, pp. 731-736, 2010.
[2] A. Zanella, N. Bui, A. Castellani, L. Vangelista and M. Zorzi, “Internet of Things for Smart Cities”, IEEE Internet of Things Journal,
vol. 1, no. 1, pp. 22-32, Feb. 2014.
[3] M. Wollschlaeger, T. Sauter and J. Jasperneite, “The Future of Industrial Communication: Automation Networks in the Era of the
Internet of Things and Industry 4.0,”IEEE Industrial Electronics Magazine, vol. 11, no. 1, pp. 17-27, March 2017.
[4] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, “Edge Computing: Vision and Challenges,” IEEE Internet of Things Journal, vol. 3, no.
5, pp. 637-646, Oct. 2016.
[5] N. H. Motlagh, M. Bagaa and T. Taleb, “UAV-Based IoT Platform: A Crowd Surveillance Use Case,” IEEE Communications Magazine,
vol. 55, no. 2, pp. 128-134, February 2017.
[6] K. Dorling, J. Heinrichs, G. G. Messier and S. Magierowski, “Vehicle Routing Problems for Drone Delivery,” IEEE Trans Systems,
Man, and Cybernetics: Systems, vol. 47, no. 1, pp. 70-85, Jan. 2017.
[7] N. H. Motlagh, M. Bagaa and T. Taleb, “UAV-Based IoT Platform: A Crowd Surveillance Use Case,” IEEE Communications Magazine,
vol. 55, no. 2, pp. 128-134, February 2017.
[8] N. Hossein Motlagh, T. Taleb and O. Arouk, “Low-Altitude Unmanned Aerial Vehicles-Based Internet of Things Services: Comprehensive
Survey and Future Perspectives,” IEEE Internet of Things Journal, vol. 3, no. 6, pp. 899-922, Dec. 2016.
[9] D. Gan, G. Cai, J. Dias, L. Seneviratne, J. Dias and L. Seneviratne, “Attitude control of quad-rotor UAVs using an intuitive kinematics
model,” 2013 IEEE 20th International Conference on Electronics, Circuits, and Systems (ICECS), Abu Dhabi, pp. 597-600, 2013.
[10] K. Benzaid, N. Mansouri and O. Labbani-Igbida, “Robust trajectory tracking control of a quadrotor UAV,” 3rd International Conference
on Systems and Control, Algiers, pp. 206-211, 2013.
[11] M. Nguyen Duc, T. N. Trong and Y. S. Xuan, “The quadrotor MAV system using PID control, ” 2015 IEEE International Conference
on Mechatronics and Automation (ICMA), Beijing, pp. 506-510, 2015.
[12] B. Zhao, B. Xian, Y. Zhang and X. Zhang, “Nonlinear Robust Adaptive Tracking Control of a Quadrotor UAV Via Immersion and
Invariance Methodology,” IEEE Trans on Industrial Electronics, vol. 62, no. 5, pp. 2891-2902, May 2015.
[13] F. Chen, Q. Wu, B. Jiang and G. Tao, “A Reconfiguration Scheme for Quadrotor Helicopter via Simple Adaptive Control and Quantum
Logic,” IEEE Trans Industrial Electronics, vol. 62, no. 7, pp. 4328-4335, July 2015.
[14] M. Bisheban and T. Lee, ”Geometric Adaptive Control With Neural Networks for a Quadrotor in Wind Fields,” IEEE Trans Control
Systems Technology, pp. 1-16, July 2020.
[15] D. Matouk, O. Gherouat, F. Abdessemed and A. Hassam, “Quadrotor position and attitude control via backstepping approach,” 2016
8th International Conference on Modelling, Identification and Control (ICMIC), Algiers, pp. 73-79, 2016.
[16] Y. Choi and H. Ahn, “Nonlinear Control of Quadrotor for Point Tracking: Actual Implementation and Experimental Tests,” in
IEEE/ASME Trans Mechatronics, vol. 20, no. 3, pp. 1179-1192, June 2015.
[17] D. J. Almakhles, “Robust Backstepping Sliding Mode Control for a Quadrotor Trajectory Tracking Application,” IEEE Access, vol. 8,
pp. 5515-5525, December 2020.
[18] J. Sun, Y. Wang, Y. Yu and C. Sun, “Nonlinear Robust Compensation Method for Trajectory Tracking Control of Quadrotors,” IEEE
Access, vol. 7, pp. 26766-26776, March 2019.
[19] A. C. Satici, H. Poonawala and M. W. Spong, “Robust Optimal Control of Quadrotor UAVs,” in IEEE Access, vol. 1, pp. 79-93, 2013.
[20] X. Lin, C. Wu and B. Chen, “Robust H1 Adaptive Fuzzy Tracking Control for MIMO Nonlinear Stochastic Poisson Jump Diffusion
Systems,” IEEE Trans Cybernetics, vol. 49, no. 8, pp. 3116-3130, Aug. 2019.
[21] X. Dong, Y. Zhou, Z. Ren and Y. Zhong, “Time-Varying Formation Tracking for Second-Order Multi-Agent Systems Subjected to
Switching Topologies With Application to Quadrotor Formation Flying,” in IEEE Trans Industrial Electronics, vol. 64, no. 6, pp.
5014-5024, June 2017.
[22] H. Du, W. Zhu, G. Wen, Z. Duan and J. L¨u “Distributed Formation Control of Multiple Quadrotor Aircraft Based on Nonsmooth
Consensus Algorithms,” IEEE Trans Cybernetics, vol. 49, no. 1, pp. 342-353, Jan. 2019.
[23] Z. Hou and I. Fantoni, “Interactive Leader-Follower Consensus of Multiple Quadrotors Based on Composite Nonlinear Feedback
Control,” IEEE Trans Control Systems Technology, vol. 26, no. 5, pp. 1732-1743, Sept. 2018.
[24] D. Zhou, Z. Wang and M. Schwager, “Agile Coordination and Assistive Collision Avoidance for Quadrotor Swarms Using Virtual
Structures,” IEEE Trans Robotics, vol. 34, no. 4, pp. 916-923, Aug. 2018.
[25] C. B. Low, “A dynamic virtual structure formation control for fixed-wing UAVs,” 2011 9th IEEE International Conference on Control
and Automation (ICCA), Santiago, pp. 627-632, 2011.
[26] B. S. Chen, C. Wang and M. Lee, “Stochastic Robust Team Tracking Control of Multi-UAV Networked System Under Wiener and
Poisson Random Fluctuations,” IEEE Trans Cybernetics, early access, January 2020, doi: 10.1109/TCYB.2019.2960104.
[27] J. Yang, C. Liu, M. Coombes, Y. Yan and W. Chen, “Optimal Path Following for Small Fixed-Wing UAVs Under Wind Disturbances,”
IEEE Trans Control Systems Technology, April 2020, doi:10.1109/TCST.2020.2980727.
[28] D. Shi, Z. Wu and W. Chou, “Generalized Extended State Observer Based High Precision Attitude Control of Quadrotor Vehicles
Subject to Wind Disturbance,” IEEE Access, vol. 6, pp. 32349-32359, 2018.
[29] W. Mei and R. Zhang, “Cooperative Downlink Interference Transmission and Cancellation for Cellular-Connected UAV: A Divide-and-
Conquer Approach,” IEEE Trans Communications, vol. 68, no. 2, pp. 1297-1311, Feb. 2020.
[30] A. A. Khuwaja, G. Zheng, Y. Chen and W. Feng, “Optimum Deployment of Multiple UAVs for Coverage Area Maximization in the
Presence of Co-Channel Interference,” IEEE Access, vol. 7, pp. 85203-85212, 2019.
[31] Y. Huang, J. Xu, L. Qiu and R. Zhang, “Cognitive UAV Communication via Joint Trajectory and Power Control,” 2018 IEEE 19th
International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, pp. 1-5, 2018.
[32] C. Shen, T. Chang, J. Gong, Y. Zeng and R. Zhang, “Multi-UAV Interference Coordination via Joint Trajectory and Power Control,”
IEEE Trans Signal Processing, vol. 68, pp. 843-858, January 2020.
[33] W. Mei, Q. Wu and R. Zhang, “Cellular-Connected UAV: Uplink Association, Power Control and Interference Coordination,” IEEE
Trans Wireless Communications, vol. 18, no. 11, pp. 5380-5393, Nov 2019.
[34] W. Yu, D. Lin and T. Song, “Adaptive Control for UAV Close Formation Flight against Disturbances,” 2018 3rd International Conference
on Robotics and Automation Engineering (ICRAE), Guangzhou, pp. 196-201, 2018.
[35] L. Ding, Q. Han, X. Ge and X. Zhang, “An Overview of Recent Advances in Event-Triggered Consensus of Multiagent Systems,” in
IEEE Trans Cybernetics, vol. 48, no. 4, pp. 1110-1123, April 2018.
[36] X. Zhang and Q. Han, “Event-triggered dynamic output feedback control for networked control systems,” IET Control Theory &
Applications, vol. 8, no. 4, pp. 226-234, 6 March 2014.
[37] S. Yan, S. K. Nguang, M. Shen and G. Zhang, “Event-triggered H1 control of networked control systems with distributed transmission
delay,” IEEE Trans Automatic Control, pp. 4295-4301, November 2019.
[38] M. Lee, B. Chen, Y. Chang and C. Hwang, “Stochastic Robust Team Formation Tracking Design of Multi-VTOL-UAV Networked
Control System in Smart City Under Time-Varying Delay and Random Fluctuation,” IEEE Access, vol. 8, pp. 131310-131326, 2020.
[39] H. Liu, T. Ma, F. L. Lewis and Y. Wan, “Robust Formation Trajectory Tracking Control for Multiple Quadrotors With Communication
Delays,” IEEE Trans Control Systems Technology, pp. 2633-2640, October 2019.
[40] W. Zhang and B. S. Chen, State Feedback H1 Control for a Class of Nonlinear Stochastic Systems. Siam Journal on Control and
Optimization - SIAM. 44. 1973-1991, 2006.
[41] W. Zhang, L. Xie, B. S. Chen, Stochastic H2/H1 Control: A Nash Game Approach, Boca Raton, FL, USA: CRC Press, 2017.
[42] C.S. Tseng, B. S. Chen and H.J. Uang, “Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model,” IEEE
Trans Fuzzy Systems, vol. 9, no. 3, pp. 381-392, June 2001.
[43] C.S. Tseng and B. S. Chen, ”H1 decentralized fuzzy model reference tracking control design for nonlinear interconnected systems,”
in IEEE Trans Fuzzy Systems, vol. 9, no. 6, pp. 795-809, Dec. 2001.
[44] Y.He, M. Wu, J.H. She and G.P. Liu, “Parameter-dependent Lyapunov functional for stability of time-delay systems with polytopic-type
uncertainties,” IEEE Trans on Automatic Control, vol. 49, no. 5, pp. 828-832, May 2004.