研究生: |
謝協伸 |
---|---|
論文名稱: |
具應力隔絕結構之三軸壓阻式加速度感測器設計與實現 Design and Implementation of Three-Axis Piezoresistive Accelerometer with Stress Isolation Structure |
指導教授: | 方維倫 |
口試委員: |
邢泰剛
陳煌坤 陳國聲 盧向成 李昇憲 吳名清 方維倫 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 138 |
中文關鍵詞: | 三軸加速度感測器 、壓阻式加速度感測器 、加速度感測器結構設計 、環境應力隔絕 、封裝應力隔絕 、結構最佳化 、有限元素分析 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以微機電技術為基礎之三軸加速度感測器在偵測三軸加速度量值時需要與外界環境有物理上的實質連接;而三軸加速度感測器本質上是一個力量的感測器。故為了增進感測器的精準度,對於隔絕影響感測器輸出的環境外力或是溫度造成的應力干擾將是一個重要的課題。因此,本文將設計一具有應力隔絕結構的感測器,以實現隔絕環境外力或是溫度造成的應力干擾之效果。
本文設計一應力隔絕結構來改善習知三軸加速度感測器的性能。因此,三軸加速度感測器因環境干擾(如外力傳遞或是溫度變化)的性能改變可以明顯的降低。為了驗證其應力隔絕的效果及製程的可行性,本文選擇三軸壓阻式加速度感測器為研究對象,並成功的利用體微細加工技術對於SOI晶片製作出具應力隔絕結構之三軸壓阻式加速度感測器。實驗結果顯示在具有懸浮彈簧及質量塊的感測器被加熱到環境溫度150 ℃時,其出平面變形由0.72 um降為0.1 um。感測器的0g偏差溫度飄移及靈敏度溫度飄移成功的被降低;而對於環境外力或是變形的傳遞所造成的干擾訊號輸出也成功的降低一個數量級。
除此之外,本研究進一步分析及探討以環氧樹脂封裝具應力隔絕結構之三軸加速度感測器的特性。研究結果顯示具有應力隔絕結構之三軸壓阻式加速度感測器可成功的降低因環氧樹脂塑膠封裝製程殘留應力所造成的輸出訊號飄移(約降低一個數量級)。此外,此三軸加速度感測器依然維持習知感測器的性能,靈敏度為0.12 ~ 0.17 mV/V/g, 而非線性小於 1.02 %。
最後,本文進一步分析及探討具應力隔絕結構之三軸加速度感測器的應力隔絕結構幾何尺寸及應力隔絕性能之最佳化。由分析結果可知,具最佳化設計參數組合之三軸壓阻式加速度感測器,其應力隔絕結構的尺寸變成98 um (守護環結構的長/寬及連接橋的長的和,先前為138 um);並再進一步降低三軸壓阻式加速度感測器因為外框變形所產生的訊號飄移一個數量級。
This study designs and implements a stress isolation guard-ring structure to improve the performances of the existing accelerometers. Thus, the environment disturbances, such as temperature variation and force/deflection transmittance, for a packaged accelerometer are significantly reduced. In application, the 3-axis piezoresistive accelerometer has been fabricated using bulk micromachining process on the SOI wafer. Experiment results show the out of plane deformation of the suspended spring-mass on packaged accelerometer is reduced from 0.72 um to 0.10 um at a 150 ℃ temperature elevation. The temperature coefficient of zero-g offset for the presented sensor is reduced, and the temperature-induced sensitivity variation is minimized as well. Measurements also demonstrate the guard-ring design successfully reduces the false signals induced by the force and displacement transmittance disturbances for one order of magnitude.
The accelerometers with guard-ring structure is further capped with glass substrate to form the glass/Si/glass sandwich and then encapsulated in plastic package. The testing results on these packaged accelerometers have shown that the guard ring structure successfully suppresses the performance shift caused by plastic packaging process for one order of magnitude. Thus, the inexpensive plastic encapsulated package for accelerometers can be implemented on the real products. Moreover, the 3-axis acceleration sensing for the presented accelerometer with guard-ring has also been demonstrated with sensitivities of 0.12 ~ 0.17 mV/V/g and non-linearity < 1.02 %.
Finally, this study further reports an optimum design to shrink the size of guard-ring, yet maintain the performance of accelerometer. Under the assistant of FEM and Taguchi method, the performance of the accelerometer is improved both in offset shift and sensitivity shift for one order of magnitude, and the size of the stress isolation structure (the sum of guard-ring length/width and connection bridge length) has been shrunk for 29 % (from 138 um to 98 um). Moreover, the unwanted higher vibration modes are far away from the first three modes. The proposed accelerometer design keeps the advantages of the original 3-axis accelerometer design.
[1] N. Yazid, F. Ayazi, and K. Najafi, “Micromachined Inertial Sensor,” Proceedings of the IEEE, vol. 86, no. 8, pp. 1640-1659, 1998.
[2] C. T. Hsieh, J. M. Ting, C. Yang, and C. K. Chung, “The Introduction of MEMS Packaging Technology,” Proceedings of 4th International Symposium on Electronics Materials and Packaging 2002 IEEE, pp. 300-306, 2002.
[3] K. Baert, P. D. Moor, H. Tilmans, J. John, A. Witvrouw, C. V. Hoof, and E. Beyne, “Trends in Wafer-Level Packaging of MEMS,” Advanced Packaging, pp 48-51, 2004.
[4] K. Okada, “Tri-Axial Piezoresistive Accelerometer,” Technical Digest of the 11th Sensor Symposium, pp. 245-248, 1992.
[5] H. Takao, Y. Matsumoto, H. D. Seo, H. Tanaka, M. Ishida, and T. Nakamura, “Three Dimensional Vector Accelerometer Using SOI Structure for High Temperature,” Transducers ’95, Stockholm, Sweden, June 1995, pp. 683-686.
[6] R. Amarasinghe, D. V. Dao, T. Toriyama, and S. Sugiyama, “Simulation, Fabrication and Characterization of A Three-Axis Piezoresistive Accelerometer,” Smart Materials and Structures, vol.15, Iss.6, pp.1691-1699, 2006.
[7] D. V. Dao, S. Okada, V. T. Dau, T. Toriyama, and S. Sugiyama, “Development of A 3-DOF Silicon Piezoresistive Micro Accelerometer,” Proceedings of the 2004 Int'l Symposium on Micro-NanoMechatronics and Human Science, Nagoya, Japan, Oct. 2004, pp.271-276, 2004.
[8] P. L. Walter, “The History of the Accelerometer,” Sound and Vibration, pp. 16-22, 1997.
[9] L. M. Roylance and J. B. Angell, “A Batch-Fabricated Silicon Accelerometer,” IEEE Transactions on Electron Devices, ED-26, pp.1911-1917, 1979.
[10] W. Benecke, L. Csepregi, A. Heuberger, K. Kuhl, and H. Seidel, “A Frequency-Selective, Piezoresistive Silicon Vibration Sensor,” the 3rd Int. Conf. on Solid-State Sensors and Actuators, pp.105-108, 1985.
[11] Y. Kanda, and K. Yamamura, “Silicon Pressure Sensors and An Accelerometer with Four-Terminal-Gauge Utilizing the Shear Stress,” Transducers ’87, 1987, pp. 406-409.
[12] T. Tschan, N. D. Rooij, A. Bezinge, S. Ansermet, and J. Berthoud, “Characterization and Modelling of Silicon Piezoresistive Accelerometers Fabricated by a Bipolar-Compatible Process,” Sensors and actuators A, vol.27, pp.605-609, 1991.
[13] T. Tschan and N. D. Rooij, “Oil-Damped Piezoresistive Silicon Accelerometers,” Transducers ’91, 1991, pp.112-114.
[14] S. Shen, J. Chen, and M. Bao, “Analysis on Twin-mass Structure for a Piezoresistive Accelerometer,” Sensors and Actuators A, vol.34, pp. 101-107, 1992.
[15] T. Tschan, N. D. Rooij, and A. Bezinge, “Damping of Piezoresistive Silicon Accelerometers,” Sensors and Actuators A, vol.32, pp.375-379, 1992.
[16] E. Peeters, S. Vergote, R. Puers, and W. Sansen, “A Highly Symmetrical Capacitive Micro-Accelerometer with Single Degree-of-Freedom Response,” Journal of Micromechanics and Microengineering, vol.2, pp. 104-107, 1992.
[17] H. Seidel, U. Fritsch, R. Gottinger, J. Schalk, J. Walter, and K. Ambaum, “A Piezoresistive Silicon Accelerometer with Monolithically Integrated CMOS-Circuitry,” The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX, Transducers ’95, Stockholm, Sweden, June 25- 29,1995, pp. 597-600.
[18] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L. Zhang, N. I. Maluf, and T. W. Kenny, “A High-Performance Planar Piezoresistive Accelerometer,” Journal of Microelectromechanical Systems, vol.9, pp 58-66, 2000.
[19] F. Rudolf, “A Micromechanical Capacitive Accelerometer with A Two-Point Inertial-Mass Suspension,” Sensors and Actuators A, vol.4 pp.191-198, 1983.
[20] H. Seidel and L. Csepregi, “Design Optimization for Cantilever-Type Accelerometers,” Sensors and Actuators A,vol.6, pp.81-92, 1984.
[21] J. T. Suminto, G. J. Yeh, T. M. Spear, and W. H. Ko, “Silicon Diaphragm Capacitive Sensor for Pressure, Flow, Acceleration and Attitude Measurements,” Transducers ’87, Tokyo, Japan, 1987, pp. 336-339.
[22] L. B. Wilner, “A High Performance, Variable Capacitance Accelerometer,” IEEE Transactions on Instrumentation and Measurement, vol.37 pp. 569-571, 1988.
[23] H. F. Schlaak, F. Arndt, A. Steckenborn, H. J. Gevatter, L. Kiesewetter, and H. Grethen, “Micromechanical Capacitive Acceleration Sensor with Force Compensation,” Micro System Technologies, pp. 617-622, 1990.
[24] U. E. Gerlach-Meyer, “Capacitive Accelerometer Made by Silicon Micromechanics,” Micro System Technologies, pp.623-628, 1990.
[25] S. Suzuki, S. Tuchitani, K. Sato, S.Ueno, Y. Yokota, M. Sato, and M. Esashi, “Semiconductor Capacitance-Type Accelerometer with PWM Electrostatic Servo Technique,” Sensors and Actuators A, vol.21, pp. 316-319, 1990.
[26] H. Seidel, H. Riedel, R. Kolbeck, G. Muck, W. Kupke, and M. Koniger, “Capacitive Silicon Accelerometer with Highly Symmetrical Design,” Sensors and Actuators A, vol.21, pp.312-315, 1990.
[27] E. Peeters, S. Vergote, B. Puers, and W. Sansen, “A Highly Symmetrical Capacitive Micro-Accelerometer with Single Degree of Freedom Response,” Journal of Micromechanics and Microengineering, vol.2, pp. 97-100, 1991.
[28] K. L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An Integrated Force-Balanced Capacitive Accelerometer for Low G Application,” Sensors and Actuators A,vol.54, pp 472-476, 1996.
[29] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Wuganuma, and M. Esashi, “Three-Axis Capacitive Accelerometer with Uniform Axial Sensitivities,” Journal of Micromechanics and Microengineering, vol.6, pp 431-435, 1996.
[30] L. C. Spangler, and C. J. Kemp, “ISAAC: Integrate Silicon Automotive Accelerometer,” Sensors and Actuators A, vol.54, pp 523-529, 1996.
[31] W. Weigold, K. Najafi, and S. W. Pang, “Design and Fabrication of Submicrometer, Single Crystal Si Accelerometer,” Journal of Microelectromechanical Systems, vol.10, No. 4, pp 518-614, 2001.
[32] E. Belloy, A. Sayah, and M. A. Gijs, “Micromachining of Glass Inertial Sensors,” Journal of Microelectromechanical System, vol.11, No.1, pp 85-90, 2002.
[33] P. L. Chen, R. S. Muller, and A. P. Andrews, “Integrated Silicon PI-FET Accelerometer with Proof Mass,” Sensors and Actuators A, vol.5, pp.119-126, 1984.
[34] P. L. Chen, R. S. Muller, R. D. Jolly, G. L. Halac, R. M. White, A. P. Andrews, T. C. Lim, and M. E. Motamedi, “Integrated Silicon Microbeam PI-FET Accelerometer,” IEEE Transactions on Electron Devices, ED-29, pp. 27-33, 1982.
[35] B. Puers and W. Sansen, “A New Uniaxial Accelerometer in Silicon Based on the Piezojunction Effect,” IEEE Transactions on Electronic Devices, 35, pp.764-770, 1988.
[36] D. L. Devoe and A. P. Pisano, “A Fully Surface-Micromachined Piezoelectric Accelerometer,” International Conference on Solid State Sensors and Actuators, Transducers ’97, Chicago, Illinois , June 1997, pp. 1205-1208.
[37] P. Scheeper, J. O. Gullov, and M. Kofoed, “A Piezoelectric Triaxial Accelerometer,” Journal of Micromechanics and Microengineering, vol.6, pp 131-133, 1996.
[38] D. W. Satchell and J. C. Greenwood, “A Thermally-Excited Silicon Accelerometer,” Sensors and Actuators A, vol.17, pp.241-245, 1989.
[39] U. A. Dauderstadt, P. M. Sarro, and S. Middelhoek, “Temperature Dependence and Drift of a Thermal Accelerometer,” International Conference on Solid State Sensors and Actuators, Transducers ’97, Chicago, Illinois , June 1997, pp. 1209-1212.
[40] C. H. Liu and T. W. Kenny, “A High-Precision, Wide-Bandwidth Micromachined Tunneling Accelerometer,” Journal of Microelectromechanical System, vol. 10, Iss. 3, pp. 425-433, 2001.
[41] C. H. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a High-sensitivity Micromachined Tunneling Accelerometer with Micro-G Resolution,” Journal of Microelectromechanical Systems, vol.7, pp 235-244, 1998.
[42] K. Jono, M. Hashimoto, and M. Esashi, “Electrostatic Servo System for Multi-Axis Accelerometers,” Proceeding of IEEE MEMS, pp. 251-256, 1994.
[43] G. I. Anderson, “A Novel 3-Axis Monolithic Silicon Accelerometer,” Transducers ’95, Stockholm, Sweden, June 1995, pp. 558-561.
[44] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Suganuma, and M. Esashi, “Three-Axis Capacitive Accelerometer with Uniform Axial Sensitivities,” Transducers ’95, Stockholm, Sweden, June 1995, pp. 554-557.
[45] H. Takao, Y. Matsumoto, and M. Ishida, “A Monolithically Integrated Three Axial Accelerometer Using Stress Sensitive CMOS Differential Amplifiers,” Transducers ’97, Chicago, USA, June 1997, pp. 1173-1176.
[46] M. Lemkin, B. Boser, D. Auslander, and J. Smith, “A 3-axis Force Balanced Accelerometer Using a Single Proof-Mass,” Transducers ’97, Chicago, USA, June 1997, pp. 1185-1188.
[47] K. Kwon and S. Park, “Three Axis Piezoresistive Accelerometer Using Polysilicon Layer,” Transducers ’97, Chicago, USA, June 1997, pp. 1221-1224.
[48] J. Plaza, H. Chen, and J. Esteve, “New Bulk Accelerometer for Triaxial Detection,” Transducers ’97, Chicago, USA, June 1997, pp. 1231-1232.
[49] G. I. Anderson, “A Novel 3-Axis Monolithic Silicon Accelerometer,” Transducers ’95, Stockholm, Sweden, June 1995, pp. 558-561.
[50] 吳名清, 張佐吉, 曾明溪, 林文正, 微機電慣性感測器於消費性電子產品之設計開發, 電子月刊, vol.150, pp.82-97, 2008.
[51] N. Maluf, An Introduction to Microelectromechanical Systems Engineering, Boston MA: Artech House, 1999.
[52] A. Selvakumar, F. Ayazi, and K. Najafi, “A high sensitivity z-axis torsional silicon accelerometer,” Tech. Dig. IEEE Int. Electron Device Meeting, San Francisco, CA, Dec. 1996, pp. 765-768.
[53] A. Selvakumar and K. Najafi, “A High-Sensitivity Z-Axis Capacitive Silicon Microaccelerometer with A Torsional Suspension,” Journal of Microelectromechanical Systems, vol. 7, No. 2, pp. 192-200. , 1998.
[54] N. Yazdi and K. Najafi, “An All-Silicon Single-Wafer Micro-G Accelerometer with A Combined Surface and Bulk Micromachining Process,” Journal of Microelectromechanical Systems, vol.9, No.4, 2000.
[55] J. Chae, H. Kulah, and K. Najafi, “A Monolithic Three-Axis Micro-G Micromachined Silicon Capacitive Accelerometer,” Journal of Microelectromechanical Systems, vol. 14, No. 2, 2005.
[56] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Suganuma, and E. Esashi, “Three-Axis Capacitive Accelerometer with Uniform Axial Sensitivities,” Journal of Micromechanics and Microengineering, vol. 6, pp. 431-435, 1996.
[57] F. Rudolf, A. Jornod, and P. Benze, “Silicon Micro-Accelerometers,” Transducers ’87, Tokyo, Japan, June 1987, pp. 376-379.
[58] Y. Matsumoto, M. Nishimura, M. Matsuura, and M. Ishida, “Three-Axis SOI Capacitive Accelerometer with PLL C-V Converter,” Sensors and Actuators A, vol.106, pp. 77-85, 1999.
[59] B. V. Amini, S. Pourkamali, and F. Ayazi, “A High Resolution, Stictionless, CMOS Compatible SOI Accelerometer with Low Noise, Low Power, 0.25m CMOS Interface,” MEMS 2004, Maastricht, Netherlands, Jan. 2004.
[60] T. Tsuchiya, and H. Funabashi, “A Z-Axis Differential Capacitive SOI Accelerometer with Vertical Comb Electrodes,” Sensors and Actuators A, vol. 116, pp. 378-383, 2004.
[61] B. V. Amini, R. Abdolvand, and F. Ayazi, “A 4.5-mW Closed-Loop ΔΣ Micro-Gravity CMOS SOI Accelerometer,” IEEE Journal of Solid-State Circuit, vol.41, No.12, pp. 2983-2991, 2006.
[62] R. Abdolvand, B. V. Amini, and F. Ayazi, “Sub-Micro-Gravity In-Plane Accelerometer with Reduced Capacitive Gaps and Extra Seismic Mass,” Journal of Microelectromechanical systems, vol.16, No.5, pp. 1036-1043, 2007.
[63] H. Hamaguchi, K. Sugano, T. Tsuchiya, and O. Tabata, “A Differential Capacitive Three-Axis SOI Accelerometer Using Vertical Comb Electrodes,” Transducers ’07, Lyon, France, June 2007, pp. 147-150.
[64] T. Tsuchiya, H. Hamaguchi, K. Sugano, and O. Tabata, “Design and Fabrication of A Differential Capacitive Three-Axis SOI Accelerometer Using Vertical Comb Electrodes,” IEEJ Transactions on Electrical and Electronic Engineering, vol. 4, pp. 345-351, 2009.
[65] Y. Watanabe, T. Mitsui, T. Mineta, Y. Matsu, and K. Okada, “SOI Micromachined 5-Axis Motion Sensor Using Resonant Electrostatic Drive and Non-Resonant Capacitive Detection Mode,” Sensors and Actuators A, 130, pp.116-123, 2006.
[66] K. Yoshida, Y. Matsumoto, M. Ishida, and K. Okada, “High-Sensitive Three Axis SOI Capacitive Accelerometer Using Dicing Method,” Technical Digest of The 16th 107 Sensor Symposium, 1998, pp. 25-28.
[67] M. Lemkin, B. Boser, and J. Smith, “A 3-axis Surface Micromachined ΣΔ Accelerometer,” Tech. Digest Int. Solid-State Circuits Conf., San Francisco, CA, Feb. 1997, pp. 202-203.
[68] B. Boser and R. T. Howe, “Surface Micromachined Accelerometers,” IEEE Journal of Solid-State Circuits, vol. 31, pp. 366-375, 1996.
[69] K. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An Integrated Force-Balanced Capacitive Accelerometer for Low-G Applications,” Transducers ’95, Stockholm, Sweden, June 1995, pp. 593-596.
[70] A. McNeil, “Flexible Design Techniques for Polysilicon MEMS Process,” Int.Elect. Manu. Tech. Symposium, pp. 290-293, 2007.
[71] W. Yun, R. T. Howe, and P. R. Gray, “Surface Micromachined Digitally Force-Balanced Accelerometer with Integrated CMOS Detection Circuitry,” in Tech. Dig. Solid-State Sensor and Actuator Workshop, Hilton Head Island, SC, June 1992, pp. 126-131.
[72] C. Lu, M. Lemkin, and B. Boser, “A Monolithic Surface Micromachined Accelerometer with Digital Output,” IEEE Journal of Solid-State Circuit, vol. 30, pp. 1367-1373, 1995.
[73] G. Zhang, H. Xie, L. E. Rosset and G. K. Fedder, “A Lateral Capacitive CMOS Accelerometer with Structural Curl Compensation,” The 12th Annual IEEE International Micro Electro Mechanical System Conference MEMS, Orlando, Florida, Jan. 1999, pp. 606-611.
[74] H. Xie and G. K. Fedder, “A CMOS Z-Axis Capacitive Accelerometer with Comb-Finger Sensing,” MEMS’00, Miyazaki, Japan, Jan. 2000, pp. 496-501.
[75] H. Luo, G. K. Fedder, and L. R. Carley, “A 1mG Lateral CMOS-MEMS Accelerometer,” MEMS’00, Miyazaki, Japan, Jan. 2000, pp.502-507.
[76] J. Wu, G. K. Fedder, and L. R. Carley, “A Low-Noise Low-Offset Chopper-Stabilized Capacitive-Readout Amplifier for CMOS MEMS Accelerometers,” Tech. Dig. IEEE Int. Solid-State Circuits Conf. (ISSCC’02), San Francisco, CA, Feb. 2002, pp. 428-430.
[77] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel, and G. K. Fedder, “Post-CMOS Processing for High-Aspect-Ratio Integrated Silicon Microstructures,” Journal of Microelectromechanical systems, vol.11, No.2, pp. 93-101, 2002.
[78] H. Lakdawala and G. K. Fedder, “Temperature Stabilization of CMOS Capacitive Accelerometers,” Journal of Micromechanics and Microengineering, vol. 14, pp. 559-566, 2004.
[79] H. Qu, D. Fang, and H. Xie, “A Monolithic CMOS-MEMS 3-axis Accelerometer with a Low-Noise, Low-Power Dual-Chopper Amplifier,” IEEE Sensors Journal, vol. 8, pp. 1511-1518, 2009.
[80] M. H. Tsai, C. Wang, and W. Fang, “A Novel Out-of-Plane Accelerometer with Fully-Differential Sensing Circuit and Sub-Micron Gap,” Transducers ’07, Lyon, France, June 2007, pp. 1487-1490.
[81] M. H. Tsai, C. M. Sun, Y. C. Liu, C. Wang, and W. Fang, “Design and Implementation of High Performance CMOS-MEMS Capacitive Sensors,” Transducers ’09, Denver, USA, June 2009, pp. 672-675.
[82] C. M. Sun, M. H. Tsai, C. Wang, Y. C. Liu, and W. Fang, “Implementation of a Monolithic TPMS Using CMOS-MEMS Technique,” Transducer’09, Denver, USA, June 2009, pp. 1730-1733.
[83] C. Wang, M. H. Tsai, C. M. Sun, and W. Fang, “A Novel CMOS Out-of-Plane Accelerometer with Fully Differential Gap-Closing Capacitance Sensing Electrodes,” Journal of Micromechanics and Microengineering, vol. 17, pp. 1275-1280, 2007.
[84] M. H. Tsai, C. M. Sun, Y. C. Liu, C. Wang, and W. Fang, “Design and Application of A Metal Wet-Etching Post-Process for the Improvement of CMOS-MEMS Capacitive Sensors,” Journal of Micromechanics and Microengineering, vol. 19, pp 1-7, 2009.
[85] M. Lemkin, M. Ortiz, N. Wongkomet, B. Boser, and J. Smith, “A 3-axis Surface Micromachined Sigma-Delta Accelerometer,” Proc. ISSCC '97, pp. 202-203, 1997.
[86] J. Chae, H. Kulah, and K. Najafi, “A Monolithic Three-Axis Micro-G Micromachined Silicon Capacitive Accelerometer,” Journal of Microelectromechanical Systems, vol. 14, No. 2, 2005.
[87] K. Jono, M. Hashimoto, and M. Esashi, “Electrostatic Servo System for Multi-Axis Accelerometers,” Proceeding IEEE MEMS, 1994, pp. 251-256
[88] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E.Suganuma, and M. Esashi, “Three-Axis Capacitive Accelerometer with Uniform Axial Sensitivities,” Transducers ’95, Stockholm, Sweden, June 1995, pp. 554-557.
[89] M. Lemkin, B. Boser, D. Auslander, and J. Smith, “A 3-axis Force Balanced Accelerometer Using A Single Proof-Mass,” Transducers ’97, Chicago, USA, June 1997, pp. 1185-1188.
[90] H. Hamaguchi, K. Sugano, T. Tsuchiya, and O. Tabata, “A Differential Capacitive Three-Axis SOI Accelerometer Using Vertical Comb Electrodes,” Transducers ’07, Lyon, France, June 2007, pp. 147-150.
[91] H. Qu, D. Fang, and H. Xie, “A Monolithic CMOS-MEMS 3-Axis Accelerometer with a Low-Noise, Low-Power Dual- Chopper Amplifier,” IEEE Sensors Journal, vol. 8, Iss. 9, Sept. 2008, pp. 1511-1518.
[92] C. M. Sun, M. H. Tsai, Y. C. Liu, and W. Fang, “Implementation of a Monolithic Single Proof-Mass Tri-Axis Accelerometer Using CMOS-MEMS Technique,” IEEE Transactions on Electron Devices, vol. 57, Iss. 7, pp. 1670-1679, 2010.
[93] 徐家保, 以SOI晶片實現微型三軸加速度感測系統, 清華大學博士論文, 2010.
[94] G. Beardmore, “Packaging for Microengineered Devices. Lessons from the Real World,” Proceedings of IEE Colloquium Assembly Connections Microsystems, London, U.K., May 1997, pp.2.1-2.8.
[95] Y. C. Lee, B. A. Parviz, J. A. Chiou, and S. Chen, “Packaging for Microelectromechanical and Nanoelectromechanical Systems,” IEEE Transactions on Advanced Packaging, vol.26, Iss.3, pp.217-226, 2003.
[96] G. Li and A. A. Tseng, “Low Stress Packaging of A Micromachined Accelerometer,” IEEE Transactions on Electronics Packaging Manufacturing, vol.24, pp. 18-25, 2001.
[97] S. Nasiri, “A Critical Review of MEMS Gyroscopes Technology and Commercialization status,” Invensense, 2003.
[98] M. Lutz, W. Golderer, J. Gerstenmeier, J. Marek, B. Maihofer, S. Mahler, H. Munzel, and U. Bischof. “A Precision Yaw Rate Sensor in Silicon Micromachining,” Transducers ’97, Chicago, IL, June 1997, pp. 847-850.
[99] N. Maluf, An Introduction to Microelectromechanical Systems Engineering, Artech House Mems. 2000.
[100] T. Dickerson and M. Ward, “Low Deformation and Stress Packaging of Micromachined Devices,” Proceedings of IEE Colloquium Assembly Connections Microsystems, London, U.K., May 1997, pp.7.1-7.3.
[101] X. Lou, J. Shi, W. Zhang, and Y. Jin, “Study on the Packaging Technology for A High-G MEMS Accelerometer,” IEEE 2005 Electronics Packaging Technology Conference, Singapore, Dec. 2005, pp.103-106.
[102] S. Walwadkar and J. Cho, “Evaluation of Die Stress in MEMS Packaging: Experimental and Theoretical Approaches,” IEEE Transactions on Components and Packaging Technologies, vol. 29, pp.735-742, 2006.
[103] E. S. Lacsamana, R. M. Navarro, M. G. Mena, L. E. Felton, and W. A. Webster, “Very Thin Packaging of Capped MEMS Accelerometer Device,” IEEE 2005 Electronics Packaging Technology Conference, Singapore , Dec. 2005, pp.98-102.
[104] T. Rogers, “Considerations of Anodic Bonding for Capacitive Type Silicon-Glass Sensor Fabrication,” Journal of Micromechanics and Microengineering, vol.2, pp.164-166, 1992.
[105] T. Rogers and J. Kowal, “Selection of Glass, Anodic Bonding Conditions and Material Compatibility for Silicon-Glass Capacitive Sensors,” Sensors and Actuators A, vol. 46, pp.113-120, 1995.
[106] H. Takao, Y. Matsumoto, H. Seo, M. Ishida, and T. Nakamura, “Analysis and Design Considerations of Three Dimensional Vector Accelerometer Using SO1 Structure for High Temperature Range,” Sensors and Actuators A, vol.55, pp.91-97, 1996.
[107] J. A. Plaza, J. Esteve, and C. Cane, “Twin-Mass Accelerometer Optimization to Reduce the Package Stresses,” Sensors and Actuators A, vol.80, pp.199-207, 2000.
[108] S. D. Senturia, Microsystem Design, Kluwer Academic Publishers, Massachusetts, 2001.
[109] W. C. Tang, Electrostatic Comb Drive for Resonant Sensor and Actuator application, Ph. D. dissertation, University of California, Berkeley, USA, 1990.
[110] V. L. Spiering, S. Bouwstra, and J. H. Fluitman, “Realization of Mechanical Decoupling Zones for Package-Stress Reduction,” Sensors and Actuators A, vol.37, pp.800-804, 1993.
[111] V. L. Spiering, S. Bouwstra, and M. S. Ruun, “On-Chip Decoupling Zone for Package-Stress Reduction,” Sensors and Actuators A, vol.39, pp. 149-157, 1993.
[112] C. S. Smith, “Piezoresistance Effect in Germanium and Silicon,” Physical Review, vol.94, pp.42-49, 1954.
[113] O. N. Tufte and E. L. Stelzer, ”Piezoresistive Properties of Silicon Diffused Layers,” Journal of Applied Physics, vol.34, pp.313-318, 1963.
[114] Y. Kanda, “A Graphical Representation of Piezoresistance Coefficient in Silicon,” IEEE Transactions on Electron Devices, ED-29, pp.64-70, 1982.
[115] H. V. Allen, S. C. Terry, and D. W. Bruin, “Self-Testable Accelerometer Systems,” Proceedings of IEEE. Micro Electro Mechanical Systems, IEEE Catalog NO. 89THO249-3, February 1989, pp. 113-115.
[116] Madou, Fundamentals of Microfabricaion, CRC Press LLC, 1997.
[117] S. M. Sze, Semiconductor Sensors, John Wiley & Sons, Inc., New York, NY, pp.182-185, 1994.
[118] B. Kloeck, Design, Fabrication and Characterization of Pezoresistive Pessure Snsors, Inding the Study of Electrochemical Etch Stop, Ph.D. dissertation, University of Neuchâtel, Switzerland, pp.100-109, 1989.
[119] http://www.coventor.com/products/coventorware/
[120] http://www.sensorsmag.com/sensors/pressure/improving-mems-pressure-sensor-845
[121] S. Weatherwax, Solid-State Sensor Handbook, pp. 7.70-7.73, SenSym, Milpitas, CA, 1991.
[122] J. Bryzek, Silicon Sensors and Microstructures, pp.4.13, Lucas NovaSensor, Freemont, CA ,1991