研究生: |
姜淑菁 Chiang, Shu-Ching |
---|---|
論文名稱: |
探討動態幾何軟體對國小四年級學生平行四邊形面積概念之研究 A study of fourth graders’ concepts of area of parallelograms through interacting with dynamic geometry software |
指導教授: |
許慧玉
Hsu, Hui-Yu |
口試委員: |
鄭英豪
陳建誠 |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 數理教育研究所 Graduate Institute of Mathematics and Science Education |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 128 |
中文關鍵詞: | 動態幾何軟體 、平行四邊形 、面積 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的是在探討動態幾何軟體對國小四年級學生平行四邊形面積概念之研究。基於上述的研究目的,本研究欲探討的研究問題有二:一、各動態幾何軟體教學活動中三組學生之學習表現為何?二、個別學生於動態幾何軟體教學活動之學習表現為何?本研究採方便取樣,主要研究對象為桃園巿某國小四年級學生高分組三名、中分組三名、低分組三名,共九名。本研究採用的研究方法為個案研究法和訪談研究法,進行資料之蒐集與質量並重之分析。本研究的研究工具主要有:半結構訪談、動態幾何軟體GeoGebra設計的教材和學習單。
本研究結果結論如下:
1.能歸納出平行四邊形的變化。
2.能發現底、高、面積之間規律關係。
3.能了解底和面積成倍數關係。
4.能了解高和面積成倍數關係。
5.能釐清同底等高平行四邊形面積相等的原因。
6.能理解長方形面積公式。
7.能覺察長方形的「長、寬」與平行四邊形的「底、高」的對應關聯。
8.能在GGB下,產生心像切割拼湊的思考,由長方形面積轉換出平行四邊形面積公式。
The purpose of the study is to explore the study of fourth graders’ concepts of area of parallelograms through interacting with dynamic geometry software. Based on the purpose above , there are two problems treated in the research. Firstly, what are the learning effects of the students of the three levels in the teaching activities of the dynamic geometry software? Secondly, what are the learning effects of each student in the teaching activities of the dynamic geometry software? This study adopts convenience sampling; it’s target studying students are the three students who are ranked with high level, the three students who are ranked with medium level, and the three students who are ranked with low level. This study adopts case study and interview method to collect data with both qualitative data analysis and quantitative data analysis. This study’s research tools are mainly semi-structured interview and exercises and worksheets designed by using the dynamic geometry software GeoGebra.
According to the research, the researcher obtains the conclusions of this study as following:
1. Students can induce the variances of parallelograms.
2. Students can find the regular relations among bases, heights, and areas.
3. Students can understand that bases and heights are under multiple relations.
4. Students can understand that heights and areas are under multiple relations.
5. Students can tell the causes why areas of parallelograms are equivalent with same bases and equal heights.
6. Students can understand the formula of area of rectangles.
7. Students can be aware of the relative relations between lengths and widths of rectangles and bases and heights of parallelograms.
8. Students can generate thoughts of cutting and patching of mental imagery under GGB which can transform the formula of area of rectangles to that of area of parallelograms.
壹、中文部分
王文科譯(1989)。學習心理學:學習理論導論。台北巿:五南圖書。
王文科(1991)。認知發展理論與教育—皮亞傑理論的應用。台北市:五南圖書出版公司。
江吟梓、蘇文賢(譯)(2010)。教育質性研究實用指南(原作者:Marilyn Lichtman)。台北巿:學富文化。
吳貞祥(1980)。國民教育科學教學資料叢書―國民小學數學教學的基礎-數、量、 形(國立教育資料館叢書)。台北:幼獅文化事業公司。
林宜臻(2013)。自由軟體GeoGebra在國高中數學教學之應用。國家教育研究院(編號:NAER-101-08-B-2-03-00-1-09),未出版。
陳光勳、譚寧君(2001)。兒童長度面積體積概念調查及診斷教學之研究—應用直觀規律(I)。行政院國家科學委員會專題研究成果報告(編號:NSC89-2511-S-152-021),未出版。
陳鉪逸(1996)。我國國小高年級學生平面圖形面積概念的研究。八十五年度師範院校學 術研討會。
陳鉪逸(1997)。我國國小高年級面積教學與學習的研究。國立台中師範學院印行。
曾千純、謝哲仁(2003)。面積概念的診斷與電腦動態化補救教學。南師學報,37(1), 41-61。
楊美惠(2002) 。直觀規律對 K-6 年級學童面積概念之探究(未出版之碩士論文) 。國立臺北師範學院,臺北市。
薛建成(2003)。 依據vanHiele幾何思考理論─探究臺灣中部地區國小學生幾何概念發展之研究(碩士論文)。 臺中師範學院,台中市。
譚寧君(1995)。面積概念探討。國民教育,35,14-19。
譚寧君(1998)。國小兒童面積迷思概念分析研究。臺北師院學報第十一期(八十七年六 月) ,頁 573-602。
貳、英文部分
Baturo, A.&Nason R.(1996).Student teachers'subject matter knowledge within the domain of area measurement. Educational Studies in Mathematics . 31,235-268.
Crowley, M. L. (1987). The vanHiele model of the development of geometric thought. In M. Lindquist & A. P. Shulte (Eds.), Learning and teaching geometry, K-12 (1-16). Reston, VA: National Council of Teachers of Mathematics.
Denzin, N. K. (1970). The research act. Chicago:Aldine.
Denzin, N. K. (1978). The research act: A theoretical introduction to sociological methods. New York:McGraw-Hill. 11.
Ferdinando,A.Federica,O.Domingo,P&Genova,O.(2002).A cognitive analysis of dragging practises in Cabri environments.ZDM,34(3),66-72.
Lehrer, R. (2003). Developing understanding of measurement. In J. Kilpatrick, W. G. Martin, & D. E. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp.179-192). Reston, VA: National Council of Teachers of Mathematics.
Lehrer, R., Jenkins, M., & Osana, H. (1998). Longitudinal study of children’s reasoning about space and geometry. In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space (pp. 137-167). Mahwah, NJ: Erlbaum.
Miller, D. A. (2011). Investigating Zeros of Cubics with GeoGebra. Mathematics Teacher, 105 (2), 146-149.
Piaget, J., & Inhelder, B. (1967). The child's conception of space (F. J. Langdon & J. L. Lunzer, Trans.). New York: W. W. Norton.