簡易檢索 / 詳目顯示

研究生: 黃郁婷
Huang, Yu-Ting
論文名稱: 冷加工對鎳基合金600於模擬BWR水質之動態應變時效影響研究
Effect of cold work on the DSA behavior of Inconel 600 alloy in simulated BWR coolant environments
指導教授: 喻冀平
Yu, Ge-Ping
黃嘉宏
Huang, Jia-Hong
口試委員: 黃俊源
Huang, Jiunn-Yuan
王星豪
Wang, Shing-Hoa
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 86
中文關鍵詞: 動態應變時效冷加工慢速率拉伸試驗英高鎳600藍脆
外文關鍵詞: Dynamic strain aging, Cold work, Slow strain rate tensile test, Inconel 600, Blue brittleness
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討不同冷加工量之Inconel 600鎳基合金於高溫溶氧水環路中的動態應變時效(Dynamic Strain Aging,簡稱DSA)現象,與DSA對材料機械性質之影響,並利用於應力-應變曲線中呈現的鋸齒流(Serrated Flow)兩種特徵,分別是應力增加量(Stress increment, △σ)和時效時間(Aging time, △t)討論溫度及冷加工量對DSA現象的影響。藉由慢速率拉伸試驗獲得於固定應變速率10-6/s下,不同試驗溫度 (200、250、275及300℃) 之溶氧水環路的應力-應變曲線。拉伸試棒則以在常溫下輥軋(Rolling)方式將合金板材冷加工至10%、20%、30% CW後再以機械加工而成,且一律採用垂直輥軋之方向(Transverse direction)進行試驗。本實驗選擇的試驗環境主要是為了模擬沸水式反應器(BWR)之高溫高壓溶氧水環路,以取得冷加工Inconel 600鎳基合金組件於該水環境下發生劣化的可能性與發生機制之相關訊息。
    機械性質方面,隨冷加工量愈低,差排增生能力上升,但強度仍受加工硬化制約。於200℃出現伸長率最小值,但截面縮減率最大值,且應變硬化指數最小值,有提早頸縮現象,此即為DSA典型特徵─藍脆現象。此外,△σ和△t的研究結果指出,30% CW於200℃時,△σ和△t隨應變量增加有顯著地上升,即顯示出鎳基合金600於小幅變形量下溶質原子與差排間的交互作用最為劇烈。因此,30% CW鎳基合金600於200℃之溶氧水環路下塑性變形時所出現的DSA現象將最不利於鎳基合金 600的機械性質。


    The slow strain rate tensile (SSRT) tests were conducted on the cold-rolled Inconel 600 alloy with different amounts of cold work (CW), 10%, 20% and 30% respectively at a nominal strain rate 1×10-6/sec in simulated BWR coolant environment. The dynamic strain aging (DSA) behavior at 200, 250, 275 and 300℃ was studied by two characteristics of serrations, stress increment (△σ) and aging time (△t), except for the observation of mechanical properties. Serrated flow was observed in all stress-strain curves which was one of the DSA manifestations. For the SSRT tests at 200℃, except the curve for the 10% CW Alloy 600 showed a combination of A-, B- and C- type serrations, type A+B serrations were observed for the as-received, 20% CW and 30% CW Alloy 600. Type B serrations were observed for those tested at the temperatures range of 250℃-300℃.
    At 200℃, the cold-rolled Alloy 600 showed a minimum elongation, but a maximum the reduction of area, and a minimum strain hardening exponent. These results showed the “blue brittleness” feature and could be accounted for by the localized deformation induced by DSA effect. Moreover, the stress increment (△σ) and aging time (△t) significantly increased with increasing strain for the 30% CW Alloy 600 tested at 200℃, it could be concluded that the interactions between solute atoms and dislocations in oxygenated water environment exacerbated the mechanical properties most.

    Table of Contents Table of Contents ............................................................................................................ iv List of Tables .................................................................................................................... vi List of Figures ................................................................................................................. vii Chapter 1 Introduction .................................................................................................. 1 Chapter 2 Literature Review 2.1 Nickel-base Inconel 600 alloy ....................................................................... 3 2.1.1 Effects of alloying elements ................................................................... 3 2.1.2 Types of carbides ................................................................................... 4 2.1.3 Strengthening mechanism ...................................................................... 5 2.2 Dynamic strain aging (DSA) ......................................................................... 7 2.2.1 General aspects ...................................................................................... 7 2.2.2 Types of serrations ................................................................................. 7 2.2.3 Models of DSA .................................................................................... 11 2.2.4 DSA in nickel-base alloys .................................................................... 14 2.3 Suzuki segregation ....................................................................................... 17 Chapter 3 Experimental Procedures 3.1 Specimen Preparation .................................................................................. 20 3.2 Microstructure analysis ................................................................................ 22 3.3 Hardness (Vickers) test ................................................................................ 23 3.4 Residual stress determination ...................................................................... 24 3.4.1 XRD sin2ψ method ............................................................................... 24 3.4.2 Through-hole-drilling method ............................................................. 26 3.5 Slow strain rate tensile (SSRT) test ............................................................. 29 v Chapter 4 Results 4.1 Microstructural observations ....................................................................... 32 4.2 Vickers hardness (HV) ................................................................................. 42 4.3 Residual stress determination ...................................................................... 45 4.4 Serrated flow in the stress-strain (σ-ɛ) curves .............................................. 48 4.5 Mechanical properties in the DSA temperature range ................................. 51 4.6 Fractography ................................................................................................ 54 Chapter 5 Discussion 5.1 Microstructural characterization .................................................................. 58 5.1.1 As-received Alloy 600 ......................................................................... 58 5.1.2 Cold-rolled Alloy 600 .......................................................................... 58 5.2 Hardness distribution of cold-rolled Alloy 600 ........................................... 61 5.3 Residual stress in T-L-S directions .............................................................. 62 5.4 Effect of DSA on mechanical properties of Alloy 600 ................................ 63 5.5 Characteristics of serrated flow ................................................................... 64 5.6 Effect of the amount of cold work on DSA behavior .................................. 68 5.7 Effect of temperature on DSA behavior ...................................................... 73 Chapter 6 Conclusions ................................................................................................. 78

    [1] P. Rodriguez, "Serrated plastic flow," Bulletin of Materials Science, vol. 6, 1984, 653-663.
    [2] V. Srinivasan, R. Sandhya, M. Valsan, K. Bhanu Sankara Rao, and S. Mannan, "Comparative evaluation of strain controlled low cycle fatigue behaviour of solution annealed and prior cold worked 316L (N) stainless steel," International journal of fatigue, vol. 26, 2004, 1295-1302.
    [3] W. Karlsen, M. Ivanchenko, U. Ehrnstén, Y. Yagodzinskyy, and H. Hänninen, "Microstructural manifestation of dynamic strain aging in AISI 316 stainless steel," Journal of nuclear materials, vol. 395, 2009, 156-161.
    [4] S. G. Hong and S. B. Lee, "Mechanism of dynamic strain aging and characterization of its effect on the low-cycle fatigue behavior in type 316L stainless steel," Journal of nuclear materials, vol. 340, 2005, 307-314.
    [5] K. Gopinath, A. Gogia, S. Kamat, and U. Ramamurty, "Dynamic strain ageing in Ni-base superalloy 720Li," Acta Materialia, vol. 57, 2009, 1243-1253.
    [6] H. Hänninen, M. Ivanchenko, Y. Yagodzinskyy, V. Nevdacha, U. Ehrnstén, and P. Aaltonen, "Dynamic Strain Aging of Ni-base Alloys Inconel 600 and 690," Proceedings of the 12th International Conference on Environmental Degradation of
    81
    Materials in Nuclear Power System – Water Reactors –, T.R. Allen, P.J. King, and L. Nelson, 2005, 1423-1430.
    [7] C. Hale, W. Rollings, and M. Weaver, "Activation energy calculations for discontinuous yielding in Inconel 718SPF," Materials Science and Engineering: A, vol. 300, 2001, 153-164.
    [8] I. S. Kim and M. Chaturvedi, "Serrated flow in Inconel 625," Trans. Jpn. Inst. Met., vol. 28, 1987, 205-212.
    [9] R. Mulford and U. Kocks, "New observations on the mechanisms of dynamic strain aging and of jerky flow," Acta Metallurgica, vol. 27, 1979, 1125-1134.
    [10] A. Cottrell, "LXXXVI. A note on the Portevin-Le Chatelier effect," Philosophical Magazine, vol. 44, 1953, 829-832.
    [11] A. Van den Beukel, "Theory of the effect of dynamic strain aging on mechanical properties," Physica status solidi (a), vol. 30, 1975, 197-206.
    [12] P. McCormick, "A model for the Portevin-Le Chatelier effect in substitutional alloys," Acta Metallurgica, vol. 20, 1972, 351-354.
    [13] K. Rose and S. Gloverj, "A study of strain-ageing in austenite," Acta Metallurgica, vol. 14, 1966, 1505-1516,.
    [14] Special Metals Corporation, "Inconel alloy 600," 2008.
    82
    [15] AS M Metals Handbook, vol. 4.
    [16] W. F. Smith, "Structure and properties of engineering alloys," McGraw-Hill, New York, 1993.
    [17] A. Portevin and F. Le Chatelier, "Sur un phénomène observé lors de l'essai de traction d'alliages en cours de transformation," Comptes Rendus de l'Académie des Sciences Paris, vol. 176, 1923, 507-510.
    [18] S. Zhang, P. McCormick, and Y. Estrin, "The morphology of Portevin–Le Chatelier bands: finite element simulation for Al–Mg–Si," Acta Materialia, vol. 49, 2001 1087-1094.
    [19] Q. Zhang, Z. Jiang, H. Jiang, Z. Chen, and X. Wu, "On the propagation and pulsation of Portevin-Le Chatelier deformation bands: An experimental study with digital speckle pattern metrology," International journal of plasticity, vol. 21, 2005, 2150-2173,.
    [20] B. Russell, "Repeated yielding in tin bronze alloys," Philosophical Magazine, vol. 8, 1963, 615-630.
    [21] P. Worthington and B. Brindley, "Serrated yielding in substitutional alloys," Philosophical Magazine, vol. 19, 1969, 1175-1178.
    [22] W. Chaenock, "The initiation of serrated yielding at elevated temperatures,"
    83
    Philosophical Magazine, vol. 20, 1969, 427-432.
    [23] J. King, C. You, and J. Knott, "Serrated yielding and the localized shear failure mode in aluminium alloys," Acta Metallurgica, vol. 29, 1981, 1553-1566.
    [24] Z. Jiang, Q. Zhang, H. Jiang, Z. Chen, and X. Wu, "Spatial characteristics of the Portevin-Le Chatelier deformation bands in Al-4at% Cu polycrystals," Materials Science and Engineering: A, vol. 403, 2005, 154-164.
    [25] P. Hähner and E. Rizzi, "On the kinematics of Portevin–Le Chatelier bands: theoretical and numerical modelling," Acta Materialia, vol. 51, 2003, 3385-3397.
    [26] A. H. a. B. Cottrell, B.A., "Dislocation theory of yielding and strain ageing of Iron," Proceedings of Physical Society A, vol. 62, 1949, 49-62.
    [27] P. G. McCormick, "A model for the Portevin-Le Chatelier effect in substitutional alloys," Acta Metallurgica, vol. 20, 1972, 351-354.
    [28] J. Friedel and L. Vassamillet, Dislocations vol. 3: Pergamon Press Oxford, 1964.
    [29] Y. Nakada and A. Keh, "Serrated flow in Ni-C alloys," Acta Metallurgica, vol. 18, 1970, 437-443.
    [30] U. Kocks, R. Cook, and R. Mulford, "Strain aging and strain hardening in Ni-C alloys," Acta Metallurgica, vol. 33, 1985, 623-638.
    [31] S. Kinoshita, P. Wray, and G. Horne, "Some observations on the Portevin-Le
    84
    Chatelier effect in Iron," AIME MET SOC TRANS, vol. 233, 1965, 1902-1904.
    [32] A. Kimura and H. Birnbaum, "Anomalous strain rate dependence of the serrated flow in Ni-H and Ni-C-H alloys," Acta Metallurgica et Materialia, vol. 38, 1990, 1343-1348.
    [33] S. H. Hong, H. Y. Kim, J. S. Jang, and I. H. Kuk, "Dynamic strain aging behavior of Inconel 600 alloy," Superalloys 1996, 1996, 401-407.
    [34] V. Shankar, M. Valsan, K. B. S. Rao, and S. Mannan, "Effects of temperature and strain rate on tensile properties and activation energy for dynamic strain aging in alloy 625," Metallurgical and Materials Transactions A, vol. 35, 2004, 3129-3139.
    [35] R. Hayes and W. Hayes, "On the mechanism of delayed discontinuous plastic flow in an age-hardened nickel alloy," Acta Metallurgica, vol. 30, 1982, 1295-1301.
    [36] J. P. Hirth and J. Lothe, "Theory of dislocations," John Wiley and Sons, Inc., 1982, 1982, 857.
    [37] A. Chiba and M. S. Kim, "Suzuki segregation and dislocation locking in supersaturated Co-Ni-based alloy," Materials transactions-JIM, vol. 42, 2001, 2112-2117.
    [38] H. Saka, "Experimental evidence for Suzuki segregation to the stacking fault of an extended dislocation in a Cu-Si alloy," Philosophical Magazine A, vol. 47, 1983,
    85
    131-140.
    [39] Y. Kaneko, K. Kaneko, A. Nohara, and H. Saka, "Evidence for Suzuki effect in an Fe-Ni-Cr austenitic stainless steel," Philosophical Magazine A, vol. 71, 1995, 399-407,.
    [40] H. Suzuki, "Chemical interaction of solute atoms with dislocations," Tohoku University, 1952, 455-463.
    [41] M. Fujita, Y. Kaneko, A. Nohara, H. Saka, R. Zauter, and H. Mughrabi, "Temperature dependence of the dissociation width of dislocations in a commercial 304 L stainless steel," ISIJ Int.(Japan), vol. 34, 1994, 697-703.
    [42] P. S. Prevey, "X-ray diffraction residual stress techniques," ASM International, ASM Handbook., vol. 10, 1986, 380-392.
    [43] G. Schajer, "Application of finite element calculations to residual stress measurements," Journal of Engineering Materials and Technology, vol. 103, 1981, 157.
    [44] "Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method," ed: ASTM E837-08e1.
    [45] A. Van Den Beukel, "On the mechanism of serrated yielding and dynamic strain ageing," Acta Metallurgica, vol. 28, 1980, 965-969,.
    86
    [46] L. Murr, "Stacking-fault anomalies and the measurement of stacking-fault free energy in fcc thin films," Thin Solid Films, vol. 4, 1969, 389-412,.
    [47] G. Han, I. Jones, and R. Smallman, "Direct evidence for Suzuki segregation and Cottrell pinning in MP159 superalloy obtained by FEG (S) TEM/EDX," Acta Materialia, vol. 51, 2003, 2731-2742.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE