簡易檢索 / 詳目顯示

研究生: 蘇 琦
Su, C.
論文名稱: 以分離元素法數值運算模擬陶瓷粉體在溶液中的分散與沉降行為
Numerical Simulation of Colloidal Dispersion and Sedimentation of Ceramic Powders by Discrete Element Method (DEM)
指導教授: 簡朝和
Jean, J. H.
口試委員: 李嘉甄
Li, Chia-Chen
鍾昇恆
Chung, Sheng-Heng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 43
中文關鍵詞: 離散元素法數值模擬陶瓷粉體分散與沉降行為
外文關鍵詞: Colloidal dispersion, Sedimentation, Ceramic powders, Discrete element method (DEM)
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以離散元素法(Discrete Element Method, DEM)數值運算模擬陶
    瓷粉體在溶液中的分散與沉降行為。此方法將每顆陶瓷粉體視為單獨的
    元素,並將陶瓷粉體間在溶液中所受到的不同交互作用力如凡德瓦吸引
    力、電雙層排斥力、浮力、重力、摩擦力等納入計算中,利用數值運算
    模擬其在有限空間與時間下的膠凝分散行為與沉降微觀結構。陶瓷粉體
    在分散與加壓沉降過程中,膠凝穩定狀態與製程參數對陶瓷粉體堆積結
    構具有即時與主導性的影響,而此影響皆可由數值運算模擬與分析得到
    驗證。具高界達電位(Zeta Potential, ζ)的陶瓷粉體懸浮液,其分散穩定
    性較為良好,而具低界達電位懸浮液中的陶瓷粉體則會形成凝團。在加
    壓沉降實驗中,具較高界達電位且分散穩定性良好的懸浮液會形成較緻
    密堆積結構;當沉降速率加快,形成的粉體堆積缺陷就越多,導致較低
    的堆積密度。


    The colloidal dispersion and sedimentation behaviors of ceramic powder
    suspensions have been assessed by numerical simulation using discrete
    element method (DEM). Forces of particle-particle including van der Waal’s
    attractive and double-layer repulsive forces, and particle-medium including
    buoyancy, gravitation and friction forces are included in the simulation. The
    results show that the ceramic powder suspension with a high zeta potential
    exhibits a better colloidal dispersion, in relative to agglomeration for the
    suspension with a low zeta potential. For colloidal filtration, a higher powder
    packing density is resulted for the sediments formed from the suspension with
    a higher zeta potential than those with a low zeta potential, consistent with
    those observed experimentally.

    摘要 II Abstract III 誌謝 IV 目錄 VI 圖目錄 VIII 第一章 前言 1 1.1離散元素分析法(Discrete Element Method, DEM) 2 1.1.1 DEM模型建立 3 1.2 粒子間交互作用力 6 1.2.1 靜電排斥力 6 1.2.2 凡得瓦吸引力 7 1.3 粒子與流體間交互作用力 7 1.3.1重力 7 1.3.2浮力 7 1.3.3拖曳力 8 1.3.4旋轉阻力 8 1.3.5流體動力升力 8 1.3.6布朗運動 8 1.4 粒子在溶液中之所有作用力 9 第二章 實驗方法 10 2.1 DEM-CFD模型 10 2.2 模擬系統 11 第三章 結果與討論 12 3.1 陶瓷粉末間交互作用能量與作用力 12 3.2 2D模擬結果 13 3.3 3D模擬結果 16 第四章 結論 18 參考文獻 19

    [1] P. A. Cundall and O. D. L. Strack, ‘‘A Discrete Numerical Model for Granular Assemblies’’, Geotechnique 29, 47–65, (1979).

    [2] Y. Tsuji, T. Tanaka and T. Ishida, ‘‘Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particle in a Horizontal Pipe’’, Powder Technol. 71, 239-250 (1992).

    [3] D. J. Shaw, Introduction to Colloid and Surface Chemistry, 4th ed; Butterworth-Heinemann, London (1992).

    [4] P. C. Hiemenz, Principles of Colloid and Surface Chemistry, 3rd ed; Marcel Dekker, New York (1997).

    [5] R. J. Hunter, Foundations of Colloid Science, Vol. I; p. 182. Clarendon, Oxford, UK (1992).

    [6] G. G. Stokes, ‘‘On the Theories of the Internal Friction of Fluids in Motion, and of the Equilibrium and Motion of Elastic Solids”, Trans. Cambridge Philos. Soc. VIII, 287-319, (1845).

    [7] C.W. Hong and P. Greil, ‘‘DEM Simulation of Particle-Packing Dynamics Packing in Colloidal Forming Processes during Colloidal Forming Processes’’; pp. 349–53 in Ceramic Trans., Am. Ceram. Soc., Columbs, OH, USA (1995).

    [8] S. Dey, S. Z. Ali and E. Padhi, ‘‘Hydrodynamic Lift on Sediment Particles at Entrainment: Present Status and Its Prospect’’, J. Hydraul. Eng., 146(6), 03120001 (2020).

    [9] C.W. Hong, ‘‘New Concept for Simulating Particle Packing in Colloidal Forming Processes”, J. Am. Ceram. Soc. 80, 2517–24, (1997).

    [10] C.W. Hong, ‘‘Discrete Element Modeling of Colloidal Packing Dynamics during Centrifugal Casting’’, J. Ceram Soc. 104, 793-795, (1996).

    [11] J. Gustafsson, E. Nordenswan, and J. B. Rosenholm, ‘‘Consolidation Behavior in Sedimentation of TiO2 Suspensions in the Presence of Electrolytes”, J. Colloid and Interface Sci. 258, 235–243, (2003).

    [12] M. Kosmulski, S. D. Vidal, J. Gustafsson, and J.B. Rosenholm, ‘‘Charge Interactions in Semi-concentrated Titania Suspensions at very High Ionic Strengths ”, J. Colloid and Interface Sci. 157, 245–259, (1999).

    [13] M. Kosmulski, J. Gustafsson, and J. B. Rosenholm, ‘‘Correlation between the Zeta Potential and Rheological Properties of Anatase Dispersions”, J. Colloid and Interface Sci. 209, 200–206, (1999).

    [14] Z. Peng, E. Doroodchi , G. Evans, ‘‘DEM simulation of aggregation of suspended nanoparticles’’, Powder Technology 204, 91-102, (2010).

    QR CODE