研究生: |
江珮儀 Pei-Yi Chiang |
---|---|
論文名稱: |
以二氧化鈦為前驅物利用水熱法 合成鈦酸鋇粒子之研究 Hydrothermal Synthesis of Barium Titanate with Titanium Oxide as Precursor |
指導教授: |
江慧真
Hui-Jean Chiang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 鈦酸鋇 、二氧化鈦 、水熱法 、填充度 |
外文關鍵詞: | Titanate Oxide, degree of fill |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以TiO2為前驅物、Ba(OH)2‧8H2O或Ba(NO3)2為鋇源、NaOH為鹼源,以水熱法於溫度220℃下反應、持溫48小時,以合成鈦酸鋇粒子。探討NaOH濃度(1~10M)、填充率(50~80%)及鋇源對鈦酸鋇產物的晶相及粒徑的影響。
研究結果顯示,當NaOH濃度低於3M時,產物為非晶形且具有雜質的顆粒;NaOH濃度高於7M時則會生成副產物而使產物純度降低。以Ba(OH)2‧8H2O為起始物的產物粒子,可能具有OH–基的晶格缺陷而影響其物理性質。填充率高於60%時,產物為粒子較大、四方相含量較低的粒子。控制NaOH濃度於4~6M、填充率接近60%時,可得到平均粒徑較小、四方性較佳的鈦酸鋇粒子。
以NaOH濃度為4~5M、填充率60%、Ba(NO3)2及TiO2為起始物進行反應,可得到平均粒徑約為150nm的四方晶鈦酸鋇粒子。
In this research, TiO2 was chosen as precursor, Ba(OH)2‧8H2O or Ba(NO3)2 as Ba2+ source and NaOH as alkali source to proceed hydrothermal synthesis of barium titanate at 220℃for 48 hours. The effect of NaOH concentration from 1 to 10M, the degree of fill of autoclave container from 50% to 80% and different Ba2+ ion source were all investigated for the influence on crystal phase and particle size of BaTiO3 product.
The investigate results that an amorphous product with impurities was obtained as NaOH concentration below 3M, and that the purity of product decreased with the formation of by-products as NaOH concentration above 7M. Barium titanate particles synthesized from Ba(OH)2‧8H2O was found to have a probability of containing lattice defect of OH– which would influence their physical properties. The products with larger size and lower tetragonality was obtained as the degree of fill above 60%. By adjusting NaOH concentration between 4~6M and the degree of fill close to 60%, Barium titanate particles with smaller average size and better tetragonality could be obtained.
The preferred tetragonal barium titanate particles with average size about 150nm could be synthesized from Ba(NO3)2 and TiO2 as precursor with NaOH concentration between 4~5M and the degree of fill of 60%.
1. G. H. Haertling (1999). Ferroelectric Ceramics: History and Technology, J. Am.Ceram. Soc., 82(4), 797-818.
2. M. Hosokawa, K. Nogi, M. Naito and T. Yokoyama (2007). Nanoparticle Technology Handbook. Elsevier.
3. C. Lichtensteiger, M. Dawber and J.-M. Triscone (2007). Ferroelectric Size Effects. In K. Rabe, Ch. H. Ahn, J.-M. Triscone (Eds.), Physics of ferroelectrics: a modern perspective (pp. 305-338). Berlin: Springer.
4. P. M. Vilarinho (2002). Functional Materials: Properties, Processing and Applications. In P. M. Vilarinho, Y. Rosenwaks and A. Kingon (Eds.), Scanning Probe Microscopy: Characterization, Nanofabrication and Device Application of Functional Materials (pp. 3-33). Kluwer Academic Pub.
5. A. Gruverman and A. Kholkin (2006). Nanoscale ferroelectrics: processing, characterization and future trends, Rep. Prog. Phys., 69, 2443.
6. S. Wada (2010). Domain Wall Engineering in Lead-Free Piezoelectric Materials and Their Enhanced Piezoelectricities. In T. Higuchi, K. Suzumori and S. Tadokoro (Eds.), Next-Generation Actuators Leading Breakthroughs (pp. 227-243). London: Springer.
7. W. Heywang, K. Lubitz and W. Wersing (Eds.). (2008). Piezoelectricity: Evolution and Future of a Technology. Berlin: Springer.
8. W. D. Kingery, H. K. Bowen and D. R. Uhlmann (1976). Introduction to Ceramics. New York: John Wiley & Sons.
9. A. J. Moulson and J. M. Herbert (2003). Electroceramics: Materials, Properties, Applications. John Wiley & Sons.
10. T. Janssen (2004). Representations of Crystallographic Groups. In A. Authier (Ed.), International Tables for Crystallography, Volume D: Physical Properties of Crystals. (pp. 34-71). Springer.
11. M. T. Buscaglia, M. Bassoli and V. Buscaglia (2005). Solid-State Synthesis of Ultrafine BaTiO3 Powders from Nanocrystalline BaCO3 and TiO2, J. Am. Ceram. Soc., 88(9), 2374–2379.
12. 徐如人、龐文琴(2004)。無機合成與製備化學。臺北:五南圖書。
13. M. Yoshimura and K. Byrappa (2008). Hydrothermal processing of materials: past, present and future, J. Mater. Sci., 43, 2085-2103.
14. K. Byrappa and M. Yoshimura (2001). Introduction to Ceramics Handbook of Hydrothermal Technology: A Technology for Crystal Growth and Materials Processing. New York: William Andrew.
15. J. O. Eckert, C. C. H. Houston, B. L. Gersten, M. M. Lencka, and R. E. Riman (1996). Kinetics and Mechanism of Hydrothermal synthesis of Barium Titanate, J. Am. Chem. Soc., 79, 2329-2939.
16. M. H. Frey and D. A. Payne (1996). Grain-size effect on structure and phase transformations for barium titanate, Phys. Rev. B, 54, 3158–3168.
17. R. Asiaie, W. Zhu, S. A. Akbar and P. K. Dutta (1996). Characterization of Submicron Particles of Tetragonal BaTiO3, Chem. Mater., 8, 226-234.
18. M. Z. C. Hu, V. Kurian, E. A. Payzant, C. J. Rawn and R. D. Hunt (2000). Wet-chemical synthesis of monodispersed barium titanate particles — hydrothermal conversion of TiO2 microspheres to nanocrystalline BaTiO3, Powder Technology, 110, 2–14.
19. H. Xu and L. Gao (2004). Hydrothermal synthesis of high-purity BaTiO3 powders: control of powder phase and size, sintering density, and dielectric properties, Materials Letters, 58, 1582-1586.
20. A. Testinon, M. T. Buscaglia, M. Viviani, V. Buscaglia and P. Nanni (2004). Synthesis of BaTiO3 Particles with Tailored Size by Precipitation from Aqueous Solutions, J. Am. Ceram. Soc., 87(1), 79–83.
21. A. N. Christensen (1970). Hydrothermal Preparation of Barium Titanate by Transport Reactions, Acta Chem. Scand, 24(7), 2447-2452.
22. H. Liu, C. Hu and Z. L. Wang (2006). Composite-Hydroxide-Mediated Approach for the Synthesis of Nanostructures of Complex Functional-Oxides, Nano Letters, 6(7), 1535-1540.
23. D. V. Bavykin, J. M. Friedrich and F. C. Walsh (2006). Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications, Adv. Mater., 2006(18), 2807–2824.
24. Y. Ma, E. Vileno, S. L. Suib and P. K. Dutta (1997). Synthesis of Tetragonal BaTiO3 by Microwave Heating and Conventional Heating, Chem. Mater., 9, 3023-3031.
25. M. Wu, J. Long, G. Wang, A. Huang, and Y. Luo (1999). Hydrothermal Synthesis of Tetragonal Barium Titanate from Barium Hydroxide and Titanium Dioxide under Moderate Conditions, J. Am. Ceram. Soc., 82(11), 3254–56.
26. M. M. Lencka and R. E. Riman (1993). Thermodynamic Modeling of Hydrothermal Synthesis of Ceramic Powders, Chem. Mater., 5, 60-70.
27. A. Rabenau (1985). The Role of Hydrothermal Synthesis in Preparative Chemistry, Angew. Chem. Int. Ed. Engl, 24(12), 1026-1040.
28. 王豔、劉暢、柏揚、陳恒芳、吉遠輝、陸小華(2006)。水熱反應釜中高溫高壓離子水溶液熱力學性質,化工學報,57(8),1856-1864。
29. 汪建民(1998)。材料分析。新竹:中國材料科學學會。
30. I. J. Clark, T. Takeuchi, N. Ohtoric and D. C. Sinclair(1999). Hydrothermal synthesis and characterisation of BaTiO3 fine powders: precursors, polymorphism and properties, J. Mater. Chem., 9, 83-91.
31. Y. Shiratori, C. Pithan, J. Dornseiffer and R. Waser(2007). Raman scattering studies on nanocrystalline BaTiO3 Part I – isolated particles and aggregates, Journal of Raman Spectraory, J. Raman Spectrosc., 38, 1288–1299.
32. Y. Mao and S. S. Wong (2006). Size- and Shape-Dependent Transformation of Nanosized Titanate into Analogous Anatase Titania Nanostructures, J. Am. Chem. Soc., 128, 8217-8226.