研究生: |
泰 拉 Thanmayee Shastry |
---|---|
論文名稱: |
溶劑和熱退火聚苯乙烯共聚聚二甲基矽氧烷共聚物自組裝建構三維奈米圖案成型技術 3D Nanopatterning of Self-Assembled Polystyrene-block-Polydimethylsiloxane via Solvent and Thermal Annealing |
指導教授: |
何榮銘
Ho, Rong-Ming |
口試委員: |
蔣酉旺
孫亞賢 陳俊太 Shi, An-Chang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 英文 |
論文頁數: | 151 |
中文關鍵詞: | 聚苯乙烯嵌段共聚聚二甲基矽氧烷 、溶劑和熱退火 、三維奈米圖案 |
外文關鍵詞: | Polystyrene-block-Polydimethylsiloxane, Solvent and Thermal Annealing, 3D Nanopatterning |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
具有取向控制的奈米微結構嵌段共聚物薄膜,尤其是垂直圓柱微結構,在奈米圖案化的領域具有極大潛力。然而,由於嵌段共聚物之組成鏈段間的表面張力差異較大,實現垂直取向控制非常具有挑戰性。為了使薄膜產生垂直的圓柱微結構,需平衡上下兩界面對於嵌段共聚物組成鏈段的親和力,即在上下兩界面各形成中性層,最終透過自對準機制形成貫穿薄膜的垂直圓柱微結構。
本研究以聚苯乙烯-聚二甲基矽氧烷嵌段共聚物 (PS-b-PDMS) 為代表系統,探討溶劑退火對取向控制的影響。我們首先使用羥基封端的高分子刷PS-OH和PDMS-OH進行兩步驟基材修飾,將其接枝至晶圓的原生氧化層 (SiO2) 上。通過調整 PS-OH 和 PDMS-OH 接枝的比例,產生具溶劑響應性 (solvent responsive) 的基材粗糙度,以誘導垂直圓柱微結構的形成。此方法不同於傳統的中和基材對於兩組成嵌段的親和力,稱之為溶劑響應性官能基化基材。在溶劑退火過程中,官能基化基材提供適當的粗糙度,驅動 PS-b-PDMS 薄膜自底部形成垂直的 PDMS 圓柱體。同時,通過空氣電漿處理可在薄膜表面產生中性層,進而在溶劑退火後於薄膜頂部形成垂直的圓柱微結構。結合這兩個步驟,溶劑退火能夠通過自對準機制在官能基化基材上實現貫穿薄膜的垂直圓柱微結構。
本研究提出利用溶劑退火進行序列式自組裝(sequential self-assembly) 來構建三維奈米圖案。通過調整溶劑的選擇性,PS-b-PDMS薄膜可形成六角穿孔層板、平行圓柱以及球體微結構。對這些微結構薄膜進行反應離子蝕刻 (RIE) 處理後,可獲得具有六角有序孔洞、平行線條及點陣列的SiO2拓樸結構。接著,透過逐層製備出點上孔 (hole-on-dot) 與孔上線 (line-on-hole) 的階層式結構,利用溶劑退火實現三維奈米圖案化的可行性,提供嵌段共聚物微影蝕刻的奈米微機電系統(nano-MEMS) 新技術。
相較於溶劑退火,熱退火技術在工業中更易被接受。本實驗室意外發現,在高真空環境下,僅需熱退火即可實現嵌段共聚物奈米微結構薄膜的垂直取向。我們推測此現象與熔融態高分子表面張力與壓力之間的相依性有關。研究顯示,當溫度和壓力升高時,高分子熔體的表面張力呈線性下降關係。然而,在高真空條件下,我們卻觀察到不同的結果,其表面張力的變化趨勢卻相反,且相較於溫度,壓力在低壓環境下對表面張力的影響更為顯著。值得注意的是,在高溫高真空條件下,不同熔融態高分子的表面張力與壓力之間均呈現線性對數關係。此行為可用 Langmuir 吸附等溫線進行解析,該等溫線呈雙曲線形態,若在對數-常態圖中繪製,則呈現出S形曲線,中間區域表現出線性特徵,與觀察到的線性對數關係相似。本研究的發現,將為透過熱退火技術實現由二維到三維奈米圖案化的發展帶來新的契機。
Nanostructured block copolymer (BCP) thin films with controlled orientation, in particular, perpendicular cylinders, are appealing for nanopatterning. However, BCP with large discrepancy on the surface tensions of constituted blocks might cause difficulties for orientation control as expected. A neutral surface of BCP thin film is needed to give perpendicular cylinders from the top of the thin film. Also, it is necessary to create a neutral substrate with equivalent affinities for the constituted blocks to achieve perpendicular cylinders from the bottom of the thin film. Consequently, it is possible to create film-spanning cylinders through a self-alignment process.
Herein, polystyrene-block-polydimethylsiloxane (PS-b-PDMS) was used as a represented BCP system to demonstrate the aimed controlled orientation through solvent annealing. A two-step substrate functionalization of an intrinsic oxide layer (SiO2) wafer was carried out by using hydroxyl-terminated PS (PS-OH) followed by hydroxyl-terminated PDMS (PDMS-OH). By varying the grafting percentage of the PS and PDMS brushes on the substrate, it is possible to create roughness variation for the induction of perpendicular cylinders. In contrast to the neutralization of the affinities, this is referred to as a responsive functionalized substrate. With appropriate roughness of the functionalized substrate under solvent annealing, perpendicularly oriented PDMS cylinders can be driven from the bottom of the PS-b-PDMS thin film. By taking advantage of air plasma treatment, it is possible to generate a top-capped neutral layer on the film surface, giving the formation of perpendicular cylinders from the top surface after solvent annealing, giving film-spanning perpendicular cylinders via a self-alignment process.
3D nanopatterning is challenging from solvent annealing. By simply tuning solvent selectivity, various nanostructures, including hexagonal perforated lamellae (HPL), parallel cylinders, and spheres, can be obtained from lamellae-forming PS-b-PDMS. After reactive ion etching (RIE) treatment of those solvent annealed PS-b-PDMS thin films with the use of various selective solvents, topographic SiO2 monoliths with an ordered arrays of hexagonally packed holes, parallel lines, and hexagonally packed dots can be fabricated. Subsequently, hole-on-dot and line-on-hole hierarchical textures can be created through a layer-by-layer process with RIE treatment, providing an appealing technique for nano-MEMS manufacturing based on BCP lithography.
In contrast to solvent annealing, thermal annealing is currently more acceptable in industries. Our laboratory unexpectedly found that the formation of perpendicular orientation of nanostructured BCP thin films simply by thermal annealing under high vacuum. Herein, this work aims to in-depth examine the pressure dependence of surface tension for polymer melts under high vacuum. Increasing both temperature and pressure above the ambient condition results in a reduction in surface tension for polymer melts, showing a linear relationship. Surprisingly, an opposite trend for the reduction in surface tension can be observed under a high vacuum condition. In contrast to temperature, the influence of pressure on surface tension at low pressure is much more significant. Most interestingly, a linear log relationship between surface tension and pressure is evident across various polymer melts under a high vacuum at a high temperature. This behaviour can be correlated with the Langmuir adsorption isotherm that features a hyperbolic curve and appears as a sigmoidal curve on an equivalent log-normal plot with a linear mid-region, resembling the linear-log relationship. This finding will bring new opportunities to evolve from 2D to 3D nanopatterning via thermal annealing.
1. Xia, Y.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M., Unconventional methods for fabricating and patterning nanostructures. Chemical reviews 1999, 99, 1823-1848.
2. Chen, Y.; Pepin, A., Nanofabrication: Conventional and nonconventional methods. Electrophoresis 2001, 22, 187-207.
3. Klefenz, H., Nanobiotechnology: from molecules to systems. Engineering in life sciences 2004, 4 (3), 211-218.
4. Thaxton, C.; Mirkin, C.; Niemeyer, C., Nanobiotechnology. Edited by CM Niemeyer, CA Mirkin 2004, 288.
5. Deguchi, K.; Haga, T., Proximity X-ray and extreme ultraviolet lithography. Comptes Rendus de l'Académie des Sciences-Series IV-Physics 2000, 1, 829-842.
6. Tseng, A. A.; Chen, K.; Chen, C. D.; Ma, K. J., Electron beam lithography in nanoscale fabrication: recent development. IEEE Transactions on Electronics Packaging Manufacturing 2003, 26, 141-149.
7. Scheer, H.; Schulz, H.; Hoffmann, T.; Torres, C. S.; Nalwa, H., Handbook of thin film materials. Elsevier 2002, 1.
8. Whitesides, G. M.; Ostuni, E.; Takayama, S.; Jiang, X.; Ingber, D. E., Soft lithography in biology and biochemistry. Annual review of biomedical engineering 2001, 3, 335-373.
9. Brehmer, M.; Conrad, L.; Funk, L., New developments in soft lithography. Journal of dispersion science and technology 2003, 24, 291-304.
10. Csucs, G.; Michel, R.; Lussi, J. W.; Textor, M.; Danuser, G., Microcontact printing of novel co-polymers in combination with proteins for cell-biological applications. Biomaterials 2003, 24, 1713-1720.
11. Renault, J.; Bernard, A.; Bietsch, A.; Michel, B.; Bosshard, H.; Delamarche, E.; Kreiter, M.; Hecht, B.; Wild, U., Fabricating arrays of single protein molecules on glass using microcontact printing. The Journal of Physical Chemistry B 2003, 107, 703-711.
12. Mayer, M.; Yang, J.; Gitlin, I.; Gracias, D. H.; Whitesides, G. M., Micropatterned agarose gels for stamping arrays of proteins and gradients of proteins. Proteomics 2004, 4, 2366-2376.
13. Ginger, D. S.; Zhang, H.; Mirkin, C. A., The evolution of dip‐pen nanolithography. Angewandte Chemie International Edition 2004, 43, 30-45.
14. Lee, K.-B.; Park, S.-J.; Mirkin, C. A.; Smith, J. C.; Mrksich, M., Protein nanoarrays generated by dip-pen nanolithography. Science 2002, 295, 1702-1705.
15. Hyun, J.; Kim, J.; Craig, S. L.; Chilkoti, A., Enzymatic nanolithography of a self-assembled oligonucleotide monolayer on gold. Journal of the American Chemical Society 2004, 126, 4770-4771.
16. Macilwain, C., Nanotech thinks big. Nature 2000, 405, 730-733.
17. Kasemo, B., Biological surface science. Surface science 2002, 500, 656-677.
18. Glass, R.; Möller, M.; Spatz, J. P., Block copolymer micelle nanolithography. Nanotechnology 2003, 14, 1153.
19. Park, J.-W.; Thomas, E. L., Anisotropic Micellar Nanoobjects from Reactive Liquid Crystalline Rod− Coil Diblock Copolymers. Macromolecules 2004, 37, 3532-3535.
20. Kralchevsky, P. A.; Denkov, N. D., Capillary forces and structuring in layers of colloid particles. Current opinion in colloid & interface science 2001, 6, 383-401.
21. Hanarp, P.; Sutherland, D. S.; Gold, J.; Kasemo, B., Control of nanoparticle film structure for colloidal lithography. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2003, 214, 23-36.
22. Moore, G. E., Gramming more components onto integrated circuits. Electronics 1965, 38, 8.
23. Sanders, D. P., Advances in patterning materials for 193 nm immersion lithography. Chemical reviews 2010, 110, 321-360.
24. Dammel, R. R., Cost-effective sub-20 nm lithography: smart chemicals to the rescue. Journal of Photopolymer Science and Technology 2011, 24, 33-42.
25. Bates, F. S.; Fredrickson, G. H., Block copolymer thermodynamics: theory and experiment. Annual review of physical chemistry 1990, 41, 525-557.
26. Park, M.; Harrison, C.; Chaikin, P. M.; Register, R. A.; Adamson, D. H., Block copolymer lithography: periodic arrays of~ 1011 holes in 1 square centimeter. Science 1997, 276, 1401-1404.
27. Park, S., Wang, J.Y., Kim, B. and Russell, T.P., From nanorings to nanodots by patterning with block copolymers. Nano Letters, 2008, 8, 1667-1672.
28. Abetz, V. and Simon, P.F., Phase behaviour and morphologies of block copolymers Springer Berlin Heidelberg. 2005, 125-212.
29. Matsen, M.W. and Schick, M., Stable and unstable phases of a diblock copolymer melt. Physical Review Letters, 1994, 72, 2660.
30. Matsen, M.W. and Bates, F.S., Unifying weak-and strong-segregation block copolymer theories. Macromolecules, 1996, 29, 1091-1098.
31. Bates, F.S. and Fredrickson, G.H., Block copolymers—designer soft materials. Physics today, 1999, 52, 32-38.
32. Park, C.; Yoon, J.; Thomas, E. L., Enabling nanotechnology with self assembled block copolymer patterns. Polymer 2003, 44, 6725-6760.
33. Kim, J. K.; Lee, J. I.; Lee, D. H., Self-assembled block copolymers: Bulk to thin film. Macromolecular Research 2008, 16, 267-292.
34. Park, S.; Lee, D. H.; Xu, J.; Kim, B.; Hong, S. W.; Jeong, U.; Xu, T.; Russell, T. P., Macroscopic 10-terabit–per–square-inch arrays from block copolymers with lateral order. Science 2009, 323, 1030-1033.
35. Hamley, I. W., Ordering in thin films of block copolymers: Fundamentals to potential applications. Progress in Polymer Science 2009, 34, 1161-1210.
36. Matsen, M. W., Thin films of block copolymer. The Journal of Chemical Physics 1997, 106, 7781-7791.
37. Lee, B.; Park, I.; Yoon, J.; Park, S.; Kim, J.; Kim, K.-W.; Chang, T.; Ree, M., Structural Analysis of Block Copolymer Thin Films with Grazing Incidence Small-Angle X-ray Scattering. Macromolecules 2005, 38, 4311-4323.
38. Park, I.; Lee, B.; Ryu, J.; Im, K.; Yoon, J.; Ree, M.; Chang, T., Epitaxial Phase Transition of Polystyrene-b-Polyisoprene from Hexagonally Perforated Layer to Gyroid Phase in Thin Film. Macromolecules 2005, 38, 10532-10536.
39. Park, H.-W.; Im, K.; Chung, B.; Ree, M.; Chang, T.; Sawa, K.; Jinnai, H., Direct Observation of HPL and DG Structure in PS-b-PI Thin Film by Transmission Electron Microscopy. Macromolecules 2007, 40, 2603-2605.
40. Park, H.-W.; Jung, J.; Chang, T., New characterization methods for block copolymers and their phase behaviors. Macromolecular Research 2009, 17, 365-377.
41. Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Horvat, A.; Magerle, R., Role of dissimilar interfaces in thin films of cylinder-forming block copolymers. The Journal of Chemical Physics 2003, 120, 1127-1137.
42. Huang, C.-I.; Lodge, T. P., Self-Consistent Calculations of Block Copolymer Solution Phase Behavior. Macromolecules 1998, 31, 3556-3565.
43. Xu, T.; Hawker, C. J.; Russell, T. P., Interfacial Interaction Dependence of Microdomain Orientation in Diblock Copolymer Thin Films. Macromolecules 2005, 38, 2802-2805.
44. Ryu, D. Y.; Wang, J.-Y.; Lavery, K. A.; Drockenmuller, E.; Satija, S. K.; Hawker, C. J.; Russell, T. P., Surface Modification with Cross-Linked Random Copolymers: Minimum Effective Thickness. Macromolecules 2007, 40, 4296-4300.
45. Ham, S.; Shin, C.; Kim, E.; Ryu, D. Y.; Jeong, U.; Russell, T. P.; Hawker, C. J., Microdomain Orientation of PS-b-PMMA by Controlled Interfacial Interactions. Macromolecules 2008, 41, 6431-6437.
46. Albert, J. N. L.; Baney, M. J.; Stafford, C. M.; Kelly, J. Y.; Epps, T. H., Generation of Monolayer Gradients in Surface Energy and Surface Chemistry for Block Copolymer Thin Film Studies. ACS Nano 2009, 3, 3977-3986.
47. Ramanathan, M.; Nettleton, E.; Darling, S. B., Simple orientational control over cylindrical organic–inorganic block copolymer domains for etch mask applications. Thin Solid Films 2009, 517, 4474-4478.
48. Fasolka, M. J.; Mayes, A. M., Block Copolymer Thin Films: Physics and Applications. Annual Review of Materials Research 2001, 31, 323-355.
49. Niihara, K.-i.; Sugimori, H.; Matsuwaki, U.; Hirato, F.; Morita, H.; Doi, M.; Masunaga, H.; Sasaki, S.; Jinnai, H., A Transition from Cylindrical to Spherical Morphology in Diblock Copolymer Thin Films. Macromolecules 2008, 41, 9318-9325.
50. Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R., Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers. Physical Review Letters 2002, 89, 035501.
51. Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C., Controlling Polymer-Surface Interactions with Random Copolymer Brushes. Science 1997, 275, 1458-1460.
52. She, M.-S.; Lo, T.-Y.; Ho, R.-M., Long-Range Ordering of Block Copolymer Cylinders Driven by Combining Thermal Annealing and Substrate Functionalization. ACS Nano 2013, 7, 2000-2011.
53. Panda, A.S., Lee, Y.C., Hung, C.J., Liu, K.P., Chang, C.Y., Manesi, G.M., Avgeropoulos, A., Tseng, F.G., Chen, F.R. and Ho, R.M., Vacuum-Driven Orientation of Nanostructured Diblock Copolymer Thin Films. ACS Nano 2022, 16,12686-12694.
54. Sivaniah, E.; Hayashi, Y.; Matsubara, S.; Kiyono, S.; Hashimoto, T.; Fukunaga, K.; Kramer, E.; Mates, T., Symmetric diblock copolymer thin films on rough substrates. Kinetics and structure formation in pure block copolymer thin films. Macromolecules 2005, 38, 1837-1849.
55. Park, S.; Lee, D. H.; Xu, J.; Kim, B.; Hong, S. W.; Jeong, U.; Xu, T.; Russell, T. P., Macroscopic 10-terabit–per–square-inch arrays from block copolymers with lateral order. Science 2009, 323, 1030-1033.
56. Zhu, Y.; Aissou, K.; Andelman, D.; Man, X., Orienting Cylinder-Forming Block Copolymer Thin Films: The Combined Effect of Substrate Corrugation and Its Surface Energy. Macromolecules 2019, 52, 1241-1248.
57. Ji, S.; Liu, C.-C.; Son, J. G.; Gotrik, K.; Craig, G. S. W.; Gopalan, P.; Himpsel, F. J.; Char, K.; Nealey, P. F., Generalization of the Use of Random Copolymers To Control the Wetting Behavior of Block Copolymer Films. Macromolecules 2008, 41, 9098-9103.
58. Ross, C. A.; Jung, Y. S.; Chuang, V. P.; Ilievski, F.; Yang, J. K. W.; Bita, I.; Thomas, E. L.; Smith, H. I.; Berggren, K. K.; Vancso, G. J.; Cheng, J. Y., Si-containing block copolymers for self-assembled nanolithography. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 2008, 26, 2489-2494.
59. Jung, Y. S.; Ross, C. A., Orientation-Controlled Self-Assembled Nanolithography Using a Polystyrene−Polydimethylsiloxane Block Copolymer. Nano Letters 2007, 7, 2046-2050.
60. Bates Christopher, M.; Seshimo, T.; Maher Michael, J.; Durand William, J.; Cushen Julia, D.; Dean Leon, M.; Blachut, G.; Ellison Christopher, J.; Willson, C. G., Polarity-Switching Top Coats Enable Orientation of Sub–10-nm Block Copolymer Domains. Science 2012, 338, 775-779.
61. Seshimo, T.; Bates, C. M.; Dean, L. M.; Cushen, J. D.; Durand, W. J.; Maher, M. J.; Ellison, C. J.; Willson, C. G., Block Copolymer Orientation Control Using a Top-Coat Surface Treatment. Journal of Photopolymer Science and Technology 2012, 25, 125-130.
62. Kim, E.; Kim, W.; Lee, K. H.; Ross, C. A.; Son, J. G., A Top Coat with Solvent Annealing Enables Perpendicular Orientation of Sub-10 nm Microdomains in Si-Containing Block Copolymer Thin Films. Advanced Functional Materials 2014, 24, 6981-6988.
63. Zhang, J.; Clark, M. B.; Wu, C.; Li, M.; Trefonas, P.; Hustad, P. D., Orientation Control in Thin Films of a High-χ Block Copolymer with a Surface Active Embedded Neutral Layer. Nano Letters 2016, 16, 728-735.
64. Lu, K.-Y.; Lo, T.-Y.; Georgopanos, P.; Avgeropoulos, A.; Shi, A.-C.; Ho, R.-M., Orienting Silicon-Containing Block Copolymer Films with Perpendicular Cylinders via Entropy and Surface Plasma Treatment. Macromolecules 2017, 50, 9403-9410.
65. Panda, A.S., Lee, Y.C., Hung, C.J., Liu, K.P., Chang, C.Y., Manesi, G.M., Avgeropoulos, A., Tseng, F.G., Chen, F.R. and Ho, R.M., Vacuum-Driven Orientation of Nanostructured Diblock Copolymer Thin Films. ACS Nano 2022, 16, 12686-12694.
66. Lu, K.-Y.; Wang, H.-F.; Lin, J.-W.; Chuang, W.-T.; Georgopanos, P.; Avgeropoulos, A.; Shi, A.-C.; Ho, R.-M., Self-Alignment of Cylinder-Forming Silicon-Containing Block Copolymer Films. Macromolecules 2018, 51, 7656-7665.
67. Piner Richard, D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin Chad, A., "Dip-Pen" Nanolithography. Science 1999, 283, 661-663.
68. Vega, D. A.; Harrison, C. K.; Angelescu, D. E.; Trawick, M. L.; Huse, D. A.; Chaikin, P. M.; Register, R. A., Ordering mechanisms in two-dimensional sphere-forming block copolymers. Physical Review E 2005, 71, 061803.
69. Chen, Y.; Pépin, A., Nanofabrication: Conventional and nonconventional methods. ELECTROPHORESIS 2001, 22, 187-207.
70. Bates, C. M.; Maher, M. J.; Janes, D. W.; Ellison, C. J.; Willson, C. G., Block Copolymer Lithography. Macromolecules 2014, 47, 2-12.
71. Bang, J.; Kim, S. H.; Drockenmuller, E.; Misner, M. J.; Russell, T. P.; Hawker, C. J., Defect-Free Nanoporous Thin Films from ABC Triblock Copolymers. Journal of the American Chemical Society 2006, 128, 7622-7629.
72. Lo, T.-Y.; Krishnan, M. R.; Lu, K.-Y.; Ho, R.-M., Silicon-containing block copolymers for lithographic applications. Progress in Polymer Science 2018, 77, 19-68.
73. Xiang, J.; Lu, W.; Hu, Y. J.; Wu, Y.; Yan, H.; Lieber, C. M., Ge/Si nanowire heterostructures as high-performance field-effect transistors. Nature 2006, 441, 489-493.
74. Park, H. G.; Barrelet, C. J.; Wu, Y. N.; Tian, B. Z.; Qian, F.; Lieber, C. M., A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nature Photonics 2008, 2, 622-626.
75. Stein, G. E.; Kramer, E. J.; Li, X. F.; Wang, J., Layering transitions in thin films of spherical-domain block copolymers. Macromolecules 2007, 40, 2453-2460.
76. Bates, F. S.; Hillmyer, M. A.; Lodge, T. P.; Bates, C. M.; Delaney, K. T.; Fredrickson, G. H., Multiblock polymers: panacea or Pandora's box? Science 2012, 336, 434-40.
77. Bai, W.; Ross, C. A., Functional nanostructured materials based on self-assembly of block copolymers. Mrs Bulletin 2016, 41, 100-107.
78. Doerk, G. S.; Yager, K. G., Beyond native block copolymer morphologies. Molecular Systems Design & Engineering 2017, 2, 518-538.
79. Kim, J. H.; Jin, H. M.; Yang, G. G.; Han, K. H.; Yun, T.; Shin, J. Y.; Jeong, S. J.; Kim, S. O., Smart Nanostructured Materials based on Self-Assembly of Block Copolymers. Advanced Functional Materials 2020, 30, 1902049.
80. Tavakkoli, K. G. A.; Gotrik, K. W.; Hannon, A. F.; Alexander-Katz, A.; Ross, C. A.; Berggren, K. K., Templating three-dimensional self-assembled structures in bilayer block copolymer films. Science 2012, 336, 1294-8.
81. Jeong, J. W.; Park, W. I.; Do, L. M.; Park, J. H.; Kim, T. H.; Chae, G.; Jung, Y. S., Nanotransfer Printing with sub-10 nm Resolution Realized using Directed Self-Assembly. Advanced Materials 2012, 24, 3526-3531.
82. Kim, J. Y.; Kim, B. H.; Hwang, J. O.; Jeong, S. J.; Shin, D. O.; Mun, J. H.; Choi, Y. J.; Jin, H. M.; Kim, S. O., Flexible and transferrable self-assembled nanopatterning on chemically modified graphene. Advanced Materials 2013, 25, 1331-5.
83. Shin, C.; Ahn, H.; Kim, E.; Ryu, D. Y.; Huh, J.; Kim, K. W.; Russell, T. P., Transition Behavior of Block Copolymer Thin Films on Preferential Surfaces. Macromolecules 2008, 41, 9140-9145.
84. Jung, H.; Hwang, D.; Kim, E.; Kim, B. J.; Lee, W. B.; Poelma, J. E.; Kim, J.; Hawker, C. J.; Huh, J.; Ryu du, Y.; Bang, J., Three-dimensional multilayered nanostructures with controlled orientation of microdomains from cross-linkable block copolymers. ACS Nano 2011, 5, 6164-73.
85. He, C.; Stoykovich, M. P., Self-Assembly: Profile Control in Block Copolymer Nanostructures using Bilayer Thin Films for Enhanced Pattern Transfer Processes Advanced Functional Materials 2014, 2, 7224-7224.
86. Kim, S. Y.; Nunns, A.; Gwyther, J.; Davis, R. L.; Manners, I.; Chaikin, P. M.; Register, R. A., Large-area nanosquare arrays from shear-aligned block copolymer thin films. Nano Letters 2014, 14, 5698-705.
87. Son, J. G.; Hannon, A. F.; Gotrik, K. W.; Alexander-Katz, A.; Ross, C. A., Hierarchical nanostructures by sequential self-assembly of styrene-dimethylsiloxane block copolymers of different periods. Advanced Materials 2011, 23, 634-9.
88. Jin, C.; Olsen, B. C.; Luber, E. J.; Buriak, J. M., Preferential Alignment of Incommensurate Block Copolymer Dot Arrays Forming Moire Superstructures. ACS Nano 2017, 11, 3237-3246.
89. Rahman, A.; Majewski, P. W.; Doerk, G.; Black, C. T.; Yager, K. G., Non-native three-dimensional block copolymer morphologies. Nature communications 2016, 7, 13988.
90. Grigoryev, B. A.; Nemzer, B. V.; Kurumov, D. S.; Sengers, J. V., Surface tension of normal pentane, hexane, heptane, and octane. International Journal of Thermophysics 1992, 13, 453-464.
91. Owen, M. J., Low Surface Energy Inorganic Polymers. Comments on Inorganic Chemistry 1988, 7, 195-213.
92. Wu, S., Surface and interfacial tensions of polymer melts: I. Polyethylene, polyisobutylene, and polyvinyl acetate. Journal of Colloid and Interface Science 1969, 31, 153-161.
93. Roe, R.-J., Interfacial tension between polymer liquids. Journal of Colloid and Interface Science 1969, 31, 228-235.
94. Yang, D.; Xu, Z.; Liu, C.; Wang, L., Experimental study on the surface characteristics of polymer melts. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010, 367, 174-180.
95. Lewis, G. N. R. M. P. K. S. B. L., Thermodynamics. McGraw-Hill: New York, 1961.
96. Dechoz, J.; Rozé, C., Surface tension measurement of fuels and alkanes at high pressure under different atmospheres. Applied Surface Science 2004, 229, 175-182.
97. Park, H., Thompson, R.B., Lanson, N., Tzoganakis, C., Park, C.B. and Chen, P., Effect of temperature and pressure on surface tension of polystyrene in supercritical carbon dioxide. The Journal of Physical Chemistry B 2007, 111, 3859-3868.
98. Park, H., Park, C.B., Tzoganakis, C., Tan, K.H. and Chen, P., Surface tension measurement of polystyrene melts in supercritical carbon dioxide. Industrial & engineering chemistry research 2006, 45, 1650-1658.
99. Sauer, B. B.; Dee, G. T., Molecular weight and temperature dependence of polymer surface tension: comparison of experiment with theory. Macromolecules 1991, 24, 2124-2126.
100. Jalbert, C.; Koberstein, J.T.; Yilgor, I.; Gallagher, P.; Krukonis, V., Molecular weight dependence and end-group effects on the surface tension of poly (dimethylsiloxane). Macromolecules 1993, 26, 3069-3074.
101. Huang, C. I.; Chapman, B. R.; Lodge, T. P.; Balsara, N. P., Quantifying the" neutrality" of good solvents for block copolymers: Poly (styrene-b-isoprene) in toluene, benzene, and THF. Macromolecules 1998, 31, 9384-9386.
102. Panda, A. S.; Lee, Y.-C.; Shastry, T.; Manesi, G.-M.; Avgeropoulos, A.; Ho, R.-M., Controlled Orientation of Silicon-Containing Diblock Copolymer Thin Films by Substrate Functionalization Under Vacuum. Macromolecules 2023, 56, 841–849.
103. Cheng, L. C.; Simonaitis, J. W.; Gadelrab, K. R.; Tahir, M.; Ding, Y.; Alexander‐Katz, A.; Ross, C. A. Imparting superhydrophobicity with a hierarchical block copolymer coating. Small 2020, 16, 1905509.
104. Lo, T.Y.; Chao, C.C.; Ho, R.M.; Georgopanos, P., Avgeropoulos, A. and Thomas, E.L., Phase transitions of polystyrene-b-poly (dimethylsiloxane) in solvents of varying selectivity. Macromolecules 2013, 46, 7513-7524.
105. Bai, W.; Hannon, A.F.; Gotrik, K.W.; Choi, H.K.; Aissou, K., Liontos, G.; Ntetsikas, K.; Alexander-Katz, A.; Avgeropoulos, A.; Ross, C.A., Thin film morphologies of bulk-gyroid polystyrene-block-polydimethylsiloxane under solvent vapor annealing. Macromolecules 2014, 47, 6000-6008.
106. Heitsch, A.T.; Patel, R.N.; Goodfellow, B.W.; Smilgies, D.M.; Korgel, B.A., GISAXS characterization of order in hexagonal monolayers of FePt nanocrystals. The Journal of Physical Chemistry C 2010, 114, 14427-14432.
107. Nowak, S.R.; Tiwale, N.; Doerk, G.S.; Nam, C.Y.; Black, C.T.; Yager, K.G., Responsive blends of block copolymers stabilize the hexagonally perforated lamellae morphology. Soft Matter 2023, 19, 2594-2604.
108. Smith, A. P.; Douglas, J. F.; Meredith, J. C.; Amis, E. J.; Karim, A., Combinatorial study of surface pattern formation in thin block copolymer films. Phys Rev Lett 2001, 87, 015503.
109. Bita, I.; Yang, J.K.; Jung, Y.S.; Ross, C.A.; Thomas, E.L.; Berggren, K.K., Graphoepitaxy of self-assembled block copolymers on two-dimensional periodic patterned templates. Science 2008, 321, 939-943.(108)
110. Matsen, M.W., Thin films of block copolymer. The Journal of chemical physics 1997, 106, 7781-7791.
111. Khanna, V.; Cochran, E.W.; Hexemer, A.; Stein, G.E.; Fredrickson, G.H.; Kramer, E.J., Li, X.; Wang, J.; Hahn, S.F., Effect of chain architecture and surface energies on the ordering behavior of lamellar and cylinder forming block copolymers. Macromolecules 2006, 39, 9346-9356.
112. Bosse, A.W.; Garcia-Cervera, C.J; Fredrickson, G.H., Microdomain ordering in laterally confined block copolymer thin films. Macromolecules 2007, 40, 9570-9581.
113. Shi, A.C., Self-consistent field theory of inhomogeneous polymeric systems. Variational Methods in Molecular Modeling 2017, 155-180.
114. Yang, G.; Tang, P.; Yang, Y; Cabral, J.T., Self-assembly of AB diblock copolymers under confinement into topographically patterned surfaces. The Journal of Physical Chemistry B 2009, 113, 14052-14061.
115. Zhang, L.; Yang, J.; Li, W., Emergence of Multi-strand Helices from the Self-Assembly of AB-Type Multiblock Copolymer under Cylindrical Confinement. Macromolecules 2022, 55, 9334-9343.
116. Rasmussen, K.Ø.; Kalosakas, G., Improved numerical algorithm for exploring block copolymer mesophases. Journal of Polymer Science Part B: Polymer Physics 2002, 40, 1777-1783.
117. Kim, H.C.; Park, S.M.; Hinsberg, W.D., Block copolymer based nanostructures: materials, processes, and applications to electronics. Chemical reviews 2010, 110, 146-177.
118. Li, W.; Müller, M., Directed self-assembly of block copolymers by chemical or topographical guiding patterns: Optimizing molecular architecture, thin-film properties, and kinetics. Progress in Polymer Science 2016, 54, 47-75.
119. Metwalli, E.; Krisch, I.; Markovits, I.; Rawolle, M.; Ruderer, M.A.; Guo, S.; Wyrzgol, S.; Jentys, A.; Perlich, J.; Lercher, J.A.; Müller‐Buschbaum, P., Polymer‐Coated PtCo Nanoparticles Deposited on Diblock Copolymer Templates: Chemical Selectivity versus Topographical Effects. ChemPhysChem 2014, 15, 2236-2239.
120. Wu, S., Polymer interface and adhesion. Routledge 2017.
121. Roe, R.J., Surface tension of polymer liquids. The Journal of Physical Chemistry 1968, 72, 2013-2017.
122. Swenson, H.; Stadie, N.P., Langmuir’s theory of adsorption: A centennial review. Langmuir 2019, 35, 5409-5426.
123. Macleod, D.B., On a relation between surface tension and density. Transactions of the Faraday Society 1923, 19, 38-41.
124. Ferguson, A. and Kennedy, S.J., Free and total surface energies and related quantities. Transactions of the Faraday Society 1936, 32, 1474-1481.