研究生: |
楊政軒 Yang, Cheng-Hsuan |
---|---|
論文名稱: |
以酵母菌探討何首烏萃取物在氧化壓力及衰老下的抗氧化活性 Study of Antioxidant Activity of Polygonum multiflorum Thunb. Extract under Oxidative Stress and Senescence in Saccharomyces cerevisiae |
指導教授: |
黎耀基
Lai, Yiu-Kay |
口試委員: |
張壯榮
Chang, Chuang-Rung 李文權 Li, Wen-Chuan |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 43 |
中文關鍵詞: | 活性氧化物 、氧化壓力 、何首烏 、酵母菌 |
外文關鍵詞: | reactive oxygen species, oxidative stress, Polygonum multiflorum Thunb, Saccharomyces cerevisiae |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
活性氧化物 (reactive oxygen species, ROS) 對細胞造成的傷害是導致許多疾病產生的因素之一,另外,當體內累積過多活性氧化物也是促成老化的重要因素,因此如何降低氧化壓力並減少氧化傷害是所有生物都要面臨的困境。何首烏為常見的傳統中草藥之一,具有抗老化、抗腫瘤、抗發炎、調節血脂等功效,目前也已知在體外及體內實驗皆證實何首烏萃取物具有良好的抗氧化功效,但其中的抗氧化作用仍缺乏完善的探討。本論文以出芽釀酒酵母為模式生物,探討不同溶劑(水及50%乙醇)萃取之何首烏是否能藉由其抗氧化活性來保護酵母菌抵抗過氧化氫及熱誘導的氧化壓力,也觀察是否能降低酵母菌在衰老過程中累積的氧化壓力。實驗結果顯示何首烏萃取物在酵母菌一般生長情況下即具有抗氧化活性,並隨著濃度降低胞內ROS含量,此外,加入50%乙醇萃取之何首烏萃取物的組別,在高濃度過氧化氫及高溫處理後可顯著提升存活率,並在相對較低濃度過氧化氫及相對低溫的處理後發現可以降低胞內ROS含量,最後,實驗也發現50%乙醇萃取之何首烏萃取物可以降低衰老酵母菌中的ROS含量也能提升粒線體膜電位,以上實驗證實50%乙醇之何首烏萃取物可藉由其抗氧化活性減低外在環境給予與衰老過程產生的氧化壓力。
Too many ROS accumulate in body without cleanup is one of the risks that promote aging. Therefore, effectively reducing oxidative stress and lowering oxidative damage are important. Polygonum multiflorum Thunb. is one of the most common Chinese herbal medicines. It is known that Polygonum multiflorum Thunb. extract (PME) has excellent antioxidant activity in vitro and in vivo, but the role of antioxidant action of PME is needed to be further explored. In this study, I used budding yeast as model to explore whether PME with different solvent (water and 50% ethanol) could protect yeasts against hydrogen peroxide and heat-induced oxidative stress and after that tested the intracellular ROS production in senescent yeasts. The result showed that PME could reduce yeasts intracellular ROS production in dose-dependent manners under normal growth conditions. Furthermore, pretreating yeasts with 50% ethanol PME could significantly enhance yeasts survival rate after the exposure to high dose hydrogen peroxide and high temperature. Relatively, it also could reduce intracellular ROS production after the exposure to lower dose hydrogen peroxide and lower temperature treatment. Lastly, the data revealed that 50% ethanol PME exhibited antioxidant activity to decrease intracellular ROS production in senescent yeasts and enhance mitochondrial membrane potential. Taken together, these results indicate that 50% ethanol PME can perform antioxidant activity to reduce oxidative stress caused by external and aging process.
1. Yang YZ. The new ingredients of Polygonum multiflorum thunb: hydroxyl on stilbene glucoside. Foreign Medical Reference 1976;SCI 3:247.
2. Chen Y, Wang M, Rosen RT, Ho CT. 2,2-Diphenyl-1-picrylhydrazyl radical-scavenging active components from Polygonum multiflorum thunb. J Agric Food Chem. 1999;47(6):2226-2228.
3. Chen HF, Chen YH, Liu CH, Wang L, Chen X, Yu BY, et al. Integrated chemometric fingerprints of antioxidant activities and HPLC-DAD-CL for assessing the quality of the processed roots of Polygonum multiflorum Thunb. (Heshouwu). Chin Med. 2016;11:18.
4. Lee BH, Huang YY, Duh PD, Wu SC. Hepatoprotection of emodin and Polygonum multiflorum against CCl(4)-induced liver injury. Pharm Biol. 2012;50(3):351-359.
5. Ma YS, Weng SW, Lin MW, Lu CC, Chiang JH, Yang JS, et al. Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: roles of apoptotic cell death and LS1034 tumor xenografts model. Food Chem Toxicol. 2012;50(5):1271-1278.
6. Lv JS, Meng DS, Xiang MF, Feng YY. Preliminary study on the Anti-inflammatory effect of Polygonum multiflorum. . China Pharmacy 2001;12:712–714.
7. Xie W, Zhao Y, Du L. Emerging approaches of traditional Chinese medicine formulas for the treatment of hyperlipidemia. J Ethnopharmacol. 2012;140(2):345-367.
8. Hu XQ, Li YL, Lin F. Effect of polygonum multiflorum and polygonum multiflorum preparation on immunoglobulin in rats. Tianjin Journal of Traditional Chinese Medicine. 2009;26:139-141.
9. Zhang JK, Yang L, Meng GL, Fan J, Chen JZ, He QZ, et al. Protective effect of tetrahydroxystilbene glucoside against hydrogen peroxide-induced dysfunction and oxidative stress in osteoblastic MC3T3-E1 cells. Eur J Pharmacol. 2012;689(1-3):31-37.
10. Liu L, Li L, Zhao L, Zhang L, Li YL, Ye CF. Effects of 2,3,5,4’- tetrahydroxystilbene-2-O-β-D-glucoside on learning and memory abilities of rats with chronic cerebral ischemia. 22, 108–115. Chinese Journal of Pharmacology and Toxicology. 2008;22:108–115.
11. Xu ZH, Yi JJ. Mechanism of the protection of stilbene glycoside which is the effective component of tuber fleece flower root on nerve cells. Asia-Pacific Traditional Medicine. 2013;9:61-62.
12. Buchter C, Zhao L, Havermann S, Honnen S, Fritz G, Proksch P, et al. TSG (2,3,5,4'-Tetrahydroxystilbene-2-O- beta -D-glucoside) from the Chinese Herb Polygonum multiflorum Increases Life Span and Stress Resistance of Caenorhabditis elegans. Oxid Med Cell Longev. 2015;2015:124357.
13. Chan YC, Cheng FC, Wang MF. Beneficial effects of different Polygonum multiflorum Thunb. extracts on memory and hippocampus morphology. J Nutr Sci Vitaminol (Tokyo). 2002;48(6):491-497.
14. Steele ML, Truong J, Govindaraghavan S, Ooi L, Sucher NJ, Munch G. Cytoprotective properties of traditional Chinese medicinal herbal extracts in hydrogen peroxide challenged human U373 astroglia cells. Neurochem Int. 2013;62(5):522-529.
15. Song SJ, Li FF, Yue H, Yin ZW. Study on the anti-aging effects of radix Polygonum multiflorum. . Journal of Hebei Medical University 2003;24:90–91.
16. Yim TK, Wu WK, Mak DH, Ko KM. Myocardial protective effect of an anthraquinone-containing extract of Polygonum multiflorum ex vivo. Planta Med. 1998;64(7):607-611.
17. Wang H. Effects of Polygonum multiflorum Thunb, extracts on the antioxidative enzymes in mice. Master thesis, Department of Food and Nutrition, Providence University, Taichung. 2000.
18. Murphy. M. How mitochondria produce reactive oxygen species. Biochemical Journal. 2009;417(Pt 1):1-13.
19. Tu BP, Weissman JS. Oxidative protein folding in eukaryotes: mechanisms and consequences. J Cell Biol. 2004;164(3):341-346.
20. Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 2003;27(1):35-64.
21. Pollegioni L, Piubelli L, Sacchi S, Pilone MS, Molla G. Physiological functions of D-amino acid oxidases: from yeast to humans. Cell Mol Life Sci. 2007;64(11):1373-1394.
22. Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006;141(2):312-322.
23. Brennan R, Schiestl R. Cadmium is an inducer of oxidative stress in yeast. 1996;356(2):171-178.
24. Davidson JF, Schiestl RH. Cytotoxic and genotoxic consequences of heat stress are dependent on the presence of oxygen in Saccharomyces cerevisiae. J Bacteriol. 2001;183(15):4580-4587.
25. Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161-1208.
26. Veal EA, Day AM, Morgan BA. Hydrogen peroxide sensing and signaling. Mol Cell. 2007;26(1):1-14.
27. Bienert GP, Moller AL, Kristiansen KA, Schulz A, Moller IM, Schjoerring JK, et al. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem. 2007;282(2):1183-1192.
28. Foyer CH, Lopez-Delgado H, Dat JF, Scott IM. Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiologia Plantarum. 1997;100(2):241-254.
29. Elstner EF. Oxygen activation and oxygen toxicity. Annual Review of Plant Biology. 1982;33:73-96.
30. Pinto E, Sigaud-Kutner TCS, Leitao MAS, Okamoto OK, Morse D, Colepicolo P. Heavy metal-induced oxidative stress in algae. Journal of Phycology. 2003;39(6):1008-1118.
31. Fariss MW, Chan CB, Patel M, Van Houten B, Orrenius S. Role of mitochondria in toxic oxidative stress. Mol Interv. 2005;5(2):94-111.
32. Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog. 2006;5:14.
33. Jaiyesimi IA, Buzdar AU, Hortobagyi G. Inflammatory breast cancer: a review. J Clin Oncol. 1992;10(6):1014-1024.
34. Hagen TM, Huang S, Curnutte J, Fowler P, Martinez V, Wehr CM, et al. Extensive oxidative DNA damage in hepatocytes of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma. Proc Natl Acad Sci U S A. 1994;91(26):12808-12812.
35. Gavazzi G, Banfi B, Deffert C, Fiette L, Schappi M, Herrmann F, et al. Decreased blood pressure in NOX1-deficient mice. FEBS Lett. 2006;580(2):497-504.
36. Wang WZ, Anderson G, Fleming JT, Peter FW, Franken RJ, Acland RD, et al. Lack of nitric oxide contributes to vasospasm during ischemia/reperfusion injury. Plast Reconstr Surg. 1997;99(4):1099-1108.
37. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci. 2007;8(1):57-69.
38. Zeevalk GD, Razmpour R, Bernard LP. Glutathione and Parkinson's disease: is this the elephant in the room? Biomed Pharmacother. 2008;62(4):236-249.
39. Behl C. Amyloid beta-protein toxicity and oxidative stress in Alzheimer's disease. Cell Tissue Res. 1997;290(3):471-480.
40. Sies H, Stahl W, Sundquist AR. Antioxidant functions of vitamins. Vitamins E and C, beta-carotene, and other carotenoids. Ann N Y Acad Sci. 1992;669:7-20.
41. Cameron E, Pauling L. Supplemental ascorbate in the supportive treatment of cancer: Prolongation of survival times in terminal human cancer. Proc Natl Acad Sci U S A. 1976;73(10):3685-3689.
42. Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta. 2003;333(1):19-39.
43. Burton GW, Ingold KU. beta-Carotene: an unusual type of lipid antioxidant. Science. 1984;224(4649):569-573.
44. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem. 1969;244(22):6049-6055.
45. Linnane AW. Mitochondria and aging: the universality of bioenergetic disease. Aging (Milano). 1992;4(4):267-271.
46. Harman D. The Free Radical Theory of Aging: Effect of Age on Serum Copper Levels. J Gerontol. 1965;20:151-153.
47. Ruetenik A, Barrientos A. Dietary restriction, mitochondrial function and aging: from yeast to humans. Biochim Biophys Acta. 2015;1847(11):1434-1447.
48. Mortimer RK, Johnston JR. Life span of individual yeast cells. Nature. 1959;183(4677):1751-1752.
49. Steinkraus KA, Kaeberlein M, Kennedy BK. Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol. 2008;24:29-54.
50. Hill SM, Hao X, Liu B, Nystrom T. Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae. Science. 2014;344(6190):1389-1392.
51. Werner-Washburne M, Braun EL, Crawford ME, Peck VM. Stationary phase in Saccharomyces cerevisiae. Mol Microbiol. 1996;19(6):1159-1166.
52. Fabrizio P, Longo VD. The chronological life span of Saccharomyces cerevisiae. Aging Cell. 2003;2(2):73-81.
53. Um M, Choi W, Aan J, Kim S, Ha T. Protective effect of Polygonum multiflorum Thunb on amyloid β-peptide 25-35 induced cognitive deficits in mice. J Ethnopharmacol. 2006;104(1-2):144-148.