簡易檢索 / 詳目顯示

研究生: 陳鴻堯
Chen, Hung-Yao
論文名稱: Recognition of Down Syndrome Based on Active Appearance Model
基於主動外觀模型之唐氏症辨識
指導教授: 陳永昌
Chen, Yung-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 54
中文關鍵詞: 主動外觀模型支持向量機唐氏症
外文關鍵詞: active appearance model (AAM), support vector machine (SVM), Down Syndrome
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • If the chromosome is unusual, it will cause the distortion on the facial features or the body. It is
    common that most of patients of Down syndrome have a variety of multiple characteristics. Sometimes,
    a patient has some obvious distinguishable characteristics, and some characteristics are
    indistinguishable. So, we have to find characteristics and rules to recognize the patients of Down
    syndrome. We choose the idea of face recognition to construct a disease recognition system by active
    appearance model (AAM) and support vector machines (SVM). Experimental results show that the
    accuracy of our system is 88.9% to recognize Down syndrome case correctly.


    依目前醫學對於罕見疾病患者的診斷,最準確的檢驗是採用染色體,但染色體檢驗必須花費昂貴的金錢以及較長的時間去做DNA 分析。 因此這篇論文主要目的是希望建立一個唐氏症疾病辨識系統,且由人臉辨識的角度來看待這個問題。所以只需要擁有人臉資訊或明顯特徵,即可來幫助醫生做簡單、快速疾病診斷。
    唐氏症疾病患者可能因某些染色體上的基因異常,導致五官或是身體上的畸變,我們希望可藉由臉部的明顯特徵來做唐氏症辨識。先前實驗室學長的研究方法以量測為主體。在這篇論文我們將從另一個角度(人臉辨識)來看待這方面的問題,以讓疾病辨識系統有個基本雛型,目前我們先將問題縮小在幼童唐氏症疾病的辨識。
    唐氏症疾病患者五官有下列幾個明顯特徵,例如 : 五官比例特殊、鼻子太扁、耳朵外觀怪異、臉頰過於肥厚扁平。在這個唐氏症辨識系統裡,我們只針對正面的人臉影像,首先利用AAM 來做人臉特徵點萃取,可以有效的減少搜尋特徵點的時間。接下來,將由AAM 所得到的外觀模型作正規化,找個相同基準點以後建立分類器的模型。最後,使用SVM 當我們的分類系統,比較先前正規化後的外觀模型之間差異。實驗結果的顯示,在做唐氏症患者的辨識上,我們具有九成左右的成功辨識率。

    Abstract Chapter 1: Introduction Chapter 2: Related Works and System Overview Chapter 3: Feature Extraction by AAM Chapter 4: Normalization of Shape points Chapter 5: Classification System – SVM Chapter 6: Experimental Results Chapter 7: Conclusion & Future Works References

    References
    [1] White, M.J.D, "The chromosome," 6th, Chapman & Hall, London. p28. 1973
    [2] Guo-Wei Pong , "Down Syndrome Recognition Based on 2D Facial Features", National Tsing Hua University, Hsinchu, Taiwan, R.O.C. July 2008
    [3] Xiaoguang Lu, "Image Analysis for Face Recogintion," Dept. of Computer Science & Engineering Michigan State University, East Lansing, MI.
    [4] Yale University face database http://cvc.yale.edu/projects/yalefaces/yalefaces.html
    [5] W. X. LIN, G PAN, Z. H. WU, Y. H. PAN, "A Survey on Facial Features Localization", Journal of Image and Graphics, vol.8, no.8, pp849-859, 2003
    [6] G. Yang and T. S. Huang, "Human Face Detection in Complex Background", Pattern Recognition, vol. 27, no. 1, pp. 53-63, 1994
    [7] C. Kotropoulos and I. Pitas, "Rule-based Face Detection in Frontal Views", Proc. International Conference on Acoustic, Speech and Signal Processing, vol. 4, pp.2537-2540, 1997
    [8] L.M. Zhang and P. Lenders, "Knowledge-based eye detection for human face recognition", Proc. Knowledge-Based Intelligent Engineering Systems and Allied Technologies, vol.1 pp. 117~120, 2000
    [9] D. Reisfeld and Y. Yeshurun, "Robust detection of facial features by generalized symmetry", Proc. International Conference on Pattern Recognition, pp.117~120, 1992
    [10] R. L. Hsu, M Abdel-Mottaleb, A. K. Jain, "Face Detection in Color Images", IEEE Transactions on Pattern Recognition and Machine Intelligence, vol. 24, no. 5, pp. 696-706, 2002
    [11] E. Osuna, R. Freund, F. Girosi, "Training Support Vector Machines: An Application to Face Detection", Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 130-136, 1997
    [12] A. L. Yuille, P. W. Hallinan and D. S. Cohen, "Feature extraction from faces using deformable templates", International Journal of Computer Vision, vol. 8, no. 2, pp.99-111, 1992
    [13] M. Kass, A. Witkin, D. Terzopoulos "Snakes: active contour models", Proc. International Conference on Computer Vision, pp. 259-268, 1987
    [14] T. F. Cootes and C. J. Taylor, "Active shape models – ’smart snakes’ " In Proc. British Machine Vision Conf., BMVC92, pages 266–275, 1992
    [15] G. Edwards, C. J. Taylor, and T. F. Cootes, "Interpreting face images using active appearance models", 3rd International Conference on Automatic Face and Gesture Recognition, pp. 300–305, 1998
    [16] T.F. Cootes, G.J. Edwards, and C.J. Taylor, “Active appearance models,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681–685, Jun. 2001
    [17] C.Y. Kin and R. Cipolla, "A probabilistic framework for perceptual grouping of features for human face Detection", Proc. 2nd International Conference on Automatic Face and Gesture Recognition, 1996
    [18] R.S. Feris, J. Gemmell, K. Toyama, V. Kruger, "Hierarchical Wavelet Networks for Facial Feature Localization", Proc. 5th International Conference Automatic Face and Gesture Recognition, pp.118-123, 2002
    [19] J. Huang, X. Shao, H. Wechsler, "Face pose discrimination using support vector machines (SVM) ", Proc. 14th International Conference on Pattern Recognition, pp. 154-156, 1998
    [20] T. F. Cootes, G. J. Edwards, and C. J. Taylor, "Active Appearance Models, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 6, pp. 681-685, Jun., 2001
    [21] I. L. Dryden and K. V. Mardia. "Statistical Shape Analysis". John Wiley & Sons, 1998
    [22] Iain Matthews and Simon Baker, "Active AppearanceModels Revisited". The Robotics Institute Carnegie Mellon University
    [23] T. F. Cootes, G. J. Edwards, and C. J. Taylor. "Active appearance models". IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):681–685, June 2001
    [24] V. N. Vapnik, "An overview of statistical learning theory", IEEE Transaction on Neural Networks, vol. 10, pp 988-999, 1999
    [25] E. Osuna, R. Freund, and F. girosi. "Training support vector machines: an application to face detection." Proc. CVPR 1997
    [26] M. Pontil and A. Verri. "Support vector machines for 3-d object recognition." IEEE Trans. on Pattern Analysis and Machine Intelligence, 20:637–646, 1998
    [27] Guodong Guo, Stan Z. Li, and Kapluk Chan, "Face Recognition by Support Vector Machines." , Nanyang Technological University, Singapore
    [28] Steven Busuttil, "Support Vector Machines", Department of Computer Science and AI, University of Malta
    [29] J. Platt. "Probabilistic outputs for support vector machine and comparison to regularize likelihood methods". In A.J. Smola, P. Bartlett, and D. Schuurmans editors, Advances in Large Margin Classifiers, pages 61-74, 2000
    [30] M. B. Stegmann, "The AAM-API: An Open Source Active Appearance Model Implementation", Proc. Medical Image Computing and Compture- Assisted Intervention, 951-952, 2003
    [31] C.C. Chang and C. J. Lin, “LIBSVM: a Library for Support Vector Machines”, Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm, 2001
    [32] Tom Fawcett. "An introduction to ROC analysis", Institute for the Study of Learning and Expertise, 2164 Staunton Court, Palo Alto, CA 94306, USA Available online 19 December 2005

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE