簡易檢索 / 詳目顯示

研究生: 王裕翔
Wang, Yu Hsiang
論文名稱: 針對不同溶劑系統之染料敏化太陽能電池的加速衰變模型建構與保值期限推測之研究
The Study of Modelling Accelerated Degradation Test and Shelf-Life Prediction of Dye-Sensitized Solar Cells with Different Types of Solvents
指導教授: 汪上曉
Wong, David Shan-Hill
口試委員: 姚遠
Yao, Yuan
劉佳霖
Liu,Jia Lin
王銘忠
Wang,Ming Jhong
許家銘
Hsu,Chia Ming
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 90
中文關鍵詞: 染料敏化太陽能電池加速衰變測試保值期限預測
外文關鍵詞: Dye-sensitized solar cells, Accelerated degradation test, Shelf-life prediction
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 染料敏化太陽能電池的電解液是影響個電池效率相當重要的一個角色,我們針對不同溶劑系統所組成的染料敏化太陽能電池進行一系列溫度加速衰變的實驗,包含”有機溶劑MPN系統”、”高分子溶液PEGDME系統”以及”離子溶液EMITCB系統”,並建構其衰變模型,衰變模型中包含了一個對數線性的衰變路徑,誤差項則考慮了樣本與樣本間的變異以及隨著Wiener過程與時間有相關性的漂移誤差。利用溫度條件而得到的衰變模型,我們再透過阿瑞尼斯關係式將不同溫度下的衰變模型結合,如此得到的加速衰變模型可以用來預測任意加速溫度以及任何時間下的衰變情形。
    由加速衰變實驗以及加速衰變模型的結果中,我們都可以發現以MPN系統的太陽能電池雖然有較高的初始效率,但隨著時間增加,會出現快速的衰變且不穩定;PEGDME系統的太陽能電池衰變的速度較為緩慢,樣本間也比較穩定,但初始效率不高;EMITCB系統太陽能電池是這三個系統中最為優異的,不僅在長期測試下衰變的速度極為緩慢,穩定度高,誤差程度小,加上EMITCB系統太陽能電池本身初始效率也不會比有機溶劑系統差太多,所以離子溶液是最適合用來製作太陽能電池之電解液的溶劑。
    利用我們建立出來的加速衰變模型可預測出EMITCB系統太陽能電池在室溫下的保值期限,如果將光電轉換效率比率的殘餘值設定在90%,使用EMITCB的太陽能電池的平均保質期限推測約為8900小時,以95.4%的信賴區間考量下期限約為2900小時,將效率比率的殘餘值設定在80%時,平均保質期限推測約為18800小時,以95.4%的信賴區間考量下約為8500小時。


    The electrolyte is an important component and its properties have much effect on the conversion efficiency and stability of DSSCs. In this study, a protocol for shelf-life estimating was proposed. Accelerated degradation tests were performed at several elevated temperatures. The results were analyzed using the degradation model for the log ratio of efficiencies at different times to the initial efficiency. The model includes a log-linear degradation rate which may vary from unit-to-unit due to common-cause variations in assembly, and a Wiener stochastic process which account for random-walk effects between measurements. An Arrhenius-type acceleration factor was used to describe effects of temperature, which allows us to extrapolate and predict degradation cells efficiency at an ambient temperature. The procedure was demonstrated using three types of dye-sensitized solar cells: one using a volatile organic solvent 3-methoxy-propionitrile, one using a nonvolatile organic solvent polyethylene-glycol-dimethyl-ether, and one using an ionic liquid 1-ethyl-3-methyl- imidazolium tetra-cyanoborate.
    It is obvious that MPN-based DSSC shows the best efficiency among the three different system, but it also exists the fastest degradation, especially at elevated temperature. The PEGDME-based DSSC have slower degradation rates, but their initial efficiencies are low. The EMITCB-based have the slowest degradation rates, while their initial efficiencies are comparable to the MPN-based DSSC. The EMITCB-based electrolyte is the best and the most suitable one of these three different types of system.
    Use of ionic liquid not only reduces the mean degradation rate but also the unit-to-unit variations. If a residual efficiency limit of 90% was used, the mean shelf-life of cells using ionic liquid was predicted to be about 8900 hours, with 95.4% confidence limit that it is greater than 2900 hours. If a residual efficiency limit of 80% was used, the mean shelf-life of cells using ionic liquid was predicted to be about 18800 hours, with 95.4% confidence limit that it is greater than 8500 hours.

    摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 IX 第一章、緒論 1 一.1前言 1 一.2太陽能電池的簡述 3 一.3染料敏化太陽能電池衰變的因素 5 一.4加速衰變試驗及模型的簡述 6 一.5研究動機 7 第二章、文獻回顧 8 二.1染料敏化太陽能電池的原理 8 二.1.1染料敏化太陽能電池的結構 8 二.1.2染料敏化太陽能電池的工作原理 10 二.1.3染料敏化太陽能電池的相關性質量測 12 二.2染料敏化太陽能電池的穩定性測試 16 二.3衰變模型建立的原理 20 二.4加速衰變模型的應用 21 第三章、實驗方法 24 三.1實驗藥品 24 三.2實驗器材 26 三.3實驗步驟 28 三.3.1電解液溶劑之選擇 28 三.3.2電解液之配置 29 三.3.3染料敏化太陽能電池之組裝 32 三.3.4電解液及電池之性質量測 33 三.3.5加速衰變實驗與室溫衰變實驗之設計 34 第四章、加速衰變模型的建立方法 36 四.1衰變模型的機制 36 四.2衰變模型變數的分析 38 四.3衰變模型之加速因子的關係 40 四.4衰變模型信賴區間的設定 41 第五章、實驗結果 42 五.1PEGDME系統電解液實驗設計之結果 42 五.2三種不同系統電解液之基本性質 46 五.3三種不同系統太陽能電池之初始效率 49 五.4太陽能電池加速衰變實驗之結果 53 五.5室溫衰變實驗之結果 69 第六章、加速衰變模型的建立 73 六.1衰變模型的分析 73 六.2衰變模型之加速因子的結合 75 六.3加速實驗結果與加速衰變模型之驗證 78 六.4加速衰變模型的外插法預測結果 83 第七章、結論與未來工作 86 附錄、參考文獻 88

    1 Petroleum, B. Energy Outlook 2035 booklet. British Petroleum (2014).
    2 Gratzel, M. Photoelectrochemical cells. Nature 414, 338-344, doi:10.1038/35104607 (2001).
    3 黃建昇. 結晶矽太陽電池發展近況. 工業材料雜誌 203, 150 (2003).
    4 郭明村. 薄膜太陽電池發展近況. 工業材料雜誌 203, 138 (2003).
    5 Kearns, D. R., Hollins, R. A., Khan, A. U., Chambers, R. W. & Radlick, P. Evidence for participation of 1Sigmag+ and 1Deltag oxygen in dye-sensitized photooxygenation reactions. J. Am. Chem. Soc. 89, 5455-&, doi:10.1021/ja00997a029 (1967).
    6 Tsubomura, H., Matsumura, M., Nomura, Y. & Amamiya, T. Dye sensitized Zinc Oxide aqueous electrolyte platinum photocell. Nature 261, 402-403, doi:10.1038/261402a0 (1976).
    7 Oregan, B. & Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737-740, doi:10.1038/353737a0 (1991).
    8 Giribabu, L., Sudhakar, K. & Velkannan, V. Phthalocyanines: potential alternative sensitizers to Ru(II) polypyridyl complexes for dye-sensitized solar cells. Curr. Sci. 102, 991-1000 (2012).
    9 Gratzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. C-Photochem. Rev. 4, 145-153, doi:10.1016/s1389-5567(03)00026-1 (2003).
    10 Jena, A. et al. Dye sensitized solar cells: A Review. Trans. Indian Ceram. Soc. 71, 1-16, doi:10.1080/0371750x.2012.689503 (2012).
    11 Kohle, O., Gratzel, M., Meyer, A. F. & Meyer, T. B. The photovoltaic stability of bis(isothiocyanato)ruthenium(II)-bis-2,2'-bipyridine-4,4'-dicarboxylic acid and related sensitizers. Adv. Mater. 9, 904-906, doi:10.1002/adma.19970091111 (1997).
    12 A. Hinsch1, J. M. K., R. Kern,I. Uhlendorf,J. Holzbock,A. Meyer and J. Ferber. Long-term stability of dye-sensitised solar cells. Progress in Photovoltaics: Research and Applications 9, 425-438 (2001).
    13 J.M. Kroon, A. H., J.A.M. van Roosmalen, N.P.G. van der Burg, N.J. Bakker,R. Kinderman, P.M. Sommeling, M. SpäthR. Kern, R. Sastrawan, J. Ferber, M. Schubert, G. Hasenhindl, C. Schill, M. Lorenz,R. Stangl, S. Baumgärtner, C. Peter A. Meyer, T. Meyer. Long term stability of dye sensitised solar cells for large area power applications. 32-38 (2000).
    14 Sommeling, P. M., Spath, M., Smit, H. J. P., Bakker, N. J. & Kroon, J. M. Long-term stability testing of dye-sensitized solar cells. J. Photochem. Photobiol. A-Chem. 164, 137-144, doi:10.1016/j.photochem.2003.12.017 (2004).
    15 Gao, F. et al. Enhance the optical absorptivity of nanocrystalline TiO(2) film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells. J. Am. Chem. Soc. 130, 10720-10728, doi:10.1021/ja801942j (2008).
    16 Gratzel, M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells (vol 164, pg 3, 2004). J. Photochem. Photobiol. A-Chem. 168, 235-235, doi:10.1016/j.jphotochem.2004.08.014 (2004).
    17 Zistler, M. et al. Comparison of electrochemical methods for triiodide diffusion coefficient measurements and observation of non-Stokesian diffusion behaviour in binary mixtures of two ionic liquids. Electrochim. Acta 52, 161-169, doi:10.1016/j.electacta.2006.04.050 (2006).
    18 Kontos, A. I. et al. Nanostructured TiO(2) films for DSSCS prepared by combining doctor-blade and sol-gel techniques. J. Mater. Process. Technol. 196, 243-248, doi:10.1016/j.jmatprotec.2007.05.051 (2008).
    19 Kubo, W., Kitamura, T., Hanabusa, K., Wada, Y. & Yanagida, S. Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator. Chem. Commun., 374-375, doi:10.1039/b110019j (2002).
    20 Yang, H. et al. High-temperature and long-term stable solid-state electrolyte for dye-sensitized solar cells by self-assembly. Chem. Mat. 18, 5173-5177, doi:10.1021/cm061112d (2006).
    21 Wang, P., Zakeeruddin, S. M., Humphry-Baker, R. & Gratzel, M. A binary ionic liquid electrolyte to achieve >= 7% power conversion efficiencies in dye-sensitized solar cells. Chem. Mat. 16, 2694-2696, doi:10.1021/cm0499161 (2004).
    22 Wang, P. et al. Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. J. Am. Chem. Soc. 127, 6850-6856, doi:10.1021/ja042232u (2005).
    23 Kuang, D. B., Wang, P., Ito, S., Zakeeruddin, S. M. & Gratzel, M. Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte. J. Am. Chem. Soc. 128, 7732-7733, doi:10.1021/ja061714y (2006).
    24 Bai, Y. et al. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nat. Mater. 7, 626-630, doi:10.1038/nmat2224 (2008).
    25 Kuang, D. B. et al. Stable dye-sensitized solar cells based on organic chromophores and ionic liquid electrolyte. Sol. Energy 85, 1189-1194, doi:10.1016/j.solener.2011.02.025 (2011).
    26 Feng, Q. Y., Jia, X. W., Zhou, G. & Wang, Z. S. Embedding an electron donor or acceptor into naphtho 2,1-b:3,4-b ' dithiophene based organic sensitizers for dye-sensitized solar cells. Chem. Commun. 49, 7445-7447, doi:10.1039/c3cc44258f (2013).
    27 Nelson, W. B. Accelerated testing: Statistical Models Test Plans and Data Analysis Custom Edition. John Wiley & Sons Canada, Limited (1992).
    28 Meeker, W. Q. & Escobar, L. A. Statistical methods for reliability data. Wiley (1998).
    29 Hoel, P. G., Port, S. C. & Stone, C. J. Introduction to stochastic processes. Houghton Mifflin Comp. (1972).
    30 Bae, S. J. & Kvam, P. H. A nonlinear random-coefficients model for degradation testing. Technometrics 46, 460-469, doi:10.1198/004017004000000464 (2004).
    31 Park, J. I. & Bae, S. J. Direct prediction methods on lifetime distribution of organic light-emitting diodes from accelerated degradation tests. IEEE Trans. Reliab. 59, 74-90, doi:10.1109/tr.2010.2040761 (2010).
    32 Yu, H. F. & Tseng, S. T. Designing a screening experiment for highly reliable products. Nav. Res. Logist. 49, 514-526, doi:10.1002/nav.10024 (2002).
    33 Tseng, S. T. & Peng, C. Y. Stochastic diffusion modeling of degradation data. Journal of Data Science 5, 315-333 (2007).
    34 Peng, C. Y. & Tseng, S. T. Mis-specification analysis of linear degradation models. IEEE Trans. Reliab. 58, 444-455, doi:10.1109/tr.2009.2026784 (2009).
    35 Haillant, O., Dumbleton, D. & Zielnik, A. An Arrhenius approach to estimating organic photovoltaic module weathering acceleration factors. Sol. Energy Mater. Sol. Cells 95, 1889-1895, doi:10.1016/j.solmat.2011.02.013 (2011).
    36 Kim, T. H., Park, N. C. & Kim, D. H. The effect of moisture on the degradation mechanism of multi-crystalline silicon photovoltaic module. Microelectron. Reliab. 53, 1823-1827, doi:10.1016/j.microrel.2013.07.047 (2013).
    37 Ott, T., Walter, T., Hariskos, D., Kiowski, O. & Schaffler, R. Accelerated aging and contact degradation of CIGS solar cells. IEEE J. Photovolt. 3, 514-519, doi:10.1109/jphotov.2012.2226141 (2013).
    38 Lan, J. L. et al. The simple and easy way to manufacture counter electrode for dye-sensitized solar cells. Curr. Appl. Phys. 10, S168-S171, doi:10.1016/j.cap.2009.11.064 (2010).
    39 Lan, J. L., Wan, C. C., Wei, T. C., Hsu, W. C. & Chang, Y. H. Durability test of PVP-capped Pt nanoclusters counter electrode for highly efficiency dye-sensitized solar cell. Prog. Photovoltaics 20, 44-50, doi:10.1002/pip.1107 (2012).
    40 Cheng, Y. S. & Peng, C. Y. Integrated degradation models in R using iDEMO. J. Stat. Softw. 49, 1-22 (2012).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE