研究生: |
蕭文詠 Hsiao, Wan-Yon |
---|---|
論文名稱: |
透過W玻色子使用大強子對撞機及高光度大強子對撞機探測類軸子粒子的規範玻色子耦合 Probing the Gauge-boson Couplings of Axion-like Particle at the LHC and High-Luminosity LHC via W boson |
指導教授: |
張敬民
Cheung, King-Man |
口試委員: |
陳傳仁
Chen, Chuan-Ren 曾柏彥 Tseng, Po-Yen |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 40 |
中文關鍵詞: | 強cp問題 、類軸子 、w玻色子 、大強子對撞機 |
外文關鍵詞: | strong CP problem, Axion Like Particle, w boson, LHC |
相關次數: | 點閱:48 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,我們利用大型強子對撞機(LHC)在√s=14TeV的對撞能量下,評估了類軸子粒子(ALP)的gaWW耦合靈敏度,其中亮度設定為L=300fb−1(當前運行)和L=3000fb−1(預期的未來高亮度)。通過在MadGraph5aMC@NLO上模擬pp→W±a(W±→l±νl),(a→γγ)過程,並使用了特定的參數集:fa=1TeV、CWW=2、CBB=1和Cg=gaf=0。為了更好區分信號和背景,我們對Ma>25GeV和Ma≤25GeV分別建立了選擇標準。結果表明,在1GeV<Ma<100GeV的ALP質量範圍內,我們將gaWW的靈敏度提高到了10−4GeV−1的水平,與現有限制相比,大約提高了一到兩個數量級。
In this study, we evaluated the sensitivity of the gaWW coupling for the axion-like particle (ALP) using the LHC at a center-of-mass energy of √s=14TeV, with luminosities set at L=300fb−1 (current operation) and L=3000fb−1 (anticipated future high luminosity). Simulating the process pp→W±a(W±→l±νl),(a→γγ) on the MadGraph5aMC@NLO, we utilized a specific parameter set: fa=1TeV, CWW=2, CBB=1 and Cg=gaf=0. To better differentiate between signal and background, we established selection criteria separately for Ma>25GeV and Ma≤25GeV. The results indicate that, in the ALP mass range 1GeV<Ma<100GeV, we improved the sensitivity of gaWW to the level of 10−4GeV−1, representing an enhancement of approximately one to two orders of magnitude compared to existing limits.
[1] C. Abel et al. Measurement of the Permanent Electric Dipole Moment of the
Neutron. Phys. Rev. Lett., 124(8):081803, 2020.
[2] R. D. Peccei and Helen R. Quinn. CP Conservation in the Presence of In-
stantons. Phys. Rev. Lett., 38:1440–1443, 1977.
[3] I. Brivio, M. B. Gavela, L. Merlo, K. Mimasu, J. M. No, R. del Rey, and
V. Sanz. ALPs Effective Field Theory and Collider Signatures. Eur. Phys.
J. C, 77(8):572, 2017.
[4] Howard Georgi, David B. Kaplan, and Lisa Randall. Manifesting the Invisible
Axion at Low-energies. Phys. Lett. B, 169:73–78, 1986.
[5] Jie Ren, Daohan Wang, Lei Wu, Jin Min Yang, and Mengchao Zhang. Detect-
ing an axion-like particle with machine learning at the LHC. JHEP, 11:138,
2021.
[6] Kingman Cheung and C. J. Ouseph. Axionlike particle search at Higgs fac-
tories. Phys. Rev. D, 108(3):035003, 2023.
[7] Alexandre Payez, Carmelo Evoli, Tobias Fischer, Maurizio Giannotti,
Alessandro Mirizzi, and Andreas Ringwald. Revisiting the SN1987A gamma-
ray limit on ultralight axion-like particles. JCAP, 02:006, 2015.
[8] Eder Izaguirre, Tongyan Lin, and Brian Shuve. Searching for Axionlike
Particles in Flavor-Changing Neutral Current Processes. Phys. Rev. Lett.,
118(11):111802, 2017.
[9] G. Alonso-Álvarez, M. B. Gavela, and P. Quilez. Axion couplings to elec-
troweak gauge bosons. The European Physical Journal C, 79(3), March 2019.
[10] F Bergsma, Jheroen Dorenbosch, James V Allaby, Ugo Amaldi, Guido Barbi-
ellini, C Berger, Wilfried Flegel, L Lanceri, M Metcalf, C Nieuwenhuis, J Pan-
man, C Santoni, Klaus Winter, I Abt, J Aspiazu, F W Büsser, H Daumann,
P D Gall, T Hebbeker, F Niebergall, P Schütt, P Stähelin, P Gorbunov,
E A Grigoriev, V S Kaftanov, V D Khovanskii, A Rosanov, A Baroncelli,
L Barone, B Borgia, C Bosio, A Capone, M Diemoz, U Dore, F Ferroni,
E Longo, L Luminari, P Monacelli, F De Notaristefani, P Pistilli, R Santace-
saria, L Tortora, and V Valente. Search for axion-like particle production in
400 GeV proton-copper interactions. Phys. Lett. B, 157:458–462, 1985.
[11] Sonia Carra, Vincent Goumarre, Ruchi Gupta, Sarah Heim, Beate Heine-
mann, Jan Kuechler, Federico Meloni, Pablo Quilez, and Yee-Chinn Yap.
Constraining off-shell production of axionlike particles with Zγ and WW dif-
ferential cross-section measurements. Phys. Rev. D, 104(9):092005, 2021.
[12] Nathaniel Craig, Anson Hook, and Skyler Kasko. The photophobic alp. Jour-
nal of High Energy Physics, 2018(9), September 2018.
[13] Johan Alwall, Michel Herquet, Fabio Maltoni, Olivier Mattelaer, and Tim
Stelzer. MadGraph 5 : Going Beyond. JHEP, 06:128, 2011.
[14] Torbjorn Sjostrand, Stephen Mrenna, and Peter Z. Skands. A Brief Intro-
duction to PYTHIA 8.1. Comput. Phys. Commun., 178:852–867, 2008.
[15] J. de Favereau, C. Delaere, P. Demin, A. Giammanco, V. Lemaître,
A. Mertens, and M. Selvaggi. DELPHES 3, A modular framework for fast
simulation of a generic collider experiment. JHEP, 02:057, 2014.
[16] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. The anti-kt jet clus-
tering algorithm. JHEP, 04:063, 2008.
[17] Matteo Cacciari, Gavin P. Salam, and Gregory Soyez. FastJet User Manual.
Eur. Phys. J. C, 72:1896, 2012.
[18] Jesse Thaler and Ken Van Tilburg. Identifying Boosted Objects with N-
subjettiness. JHEP, 03:015, 2011.
[19] Study of the double Higgs production channel H(→ b ̄b)H(→ γγ) with the
ATLAS experiment at the HL-LHC. 1 2017.
[20] Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. Asymptotic
formulae for likelihood-based tests of new physics. The European Physical
Journal C, 71(2), February 2011.