研究生: |
鍾孟儒 |
---|---|
論文名稱: |
利用P4VP-PCL進行有機-無機奈米混成之研究 Organic/Inorganic Nano-Hybrid System of P4VP-PCL |
指導教授: |
何榮銘
RONG-MING HO |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 團聯共聚合物 、混成系統 、自組裝 、生物可分解 、無機奈米陣列 |
外文關鍵詞: | block copolymer, hybrid system, self-assembling, biodegradble, inorganic nanoarray |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本實驗利用開環聚合 (Ring-opening polymerization) 與 原子轉移自由基聚合(Atom Transfer Radical Polymerization),製備聚4-乙烯啶聚己內酯雙團聯共聚合物(poly(4-vinylpyridine)-b-poly(ε-caprolactone), P4VP-PCL)。其聚4-乙烯啶團聯鏈段之苯環上氮原子具孤電子對,可與無機材料進行氫鍵或配位共價鍵結,以製備有機-無機混成材料;而聚己內酯團聯鏈段為一生物可分解 (Biodegradable)鏈段,針對奈米圖案成形技術建立而言,由於利用生物可分解方式之簡易性,可快速的製備具多樣化形態之奈米圖案成形模版。
實驗首要在確認共聚合物能自組裝微相分離形成有序微結構,才能利用P4VP團聯鏈段誘導無機材料分散成奈米結構。選用中性溶劑二氯甲烷,以溶劑塗佈方式將P4VP-PCL製備成塊材,以穿透式電子顯微鏡(TEM)與小角度X光散射(SAXS)鑑定其微結構與形態,其結果確認P4VP-PCL依體積分率組成不同可自組裝形成P4VP之圓柱、層板及PCL之六角柱狀等有序微結構。
在本實驗選用四氯金酸氫與P4VP-PCL於溶液狀態下進行混成,再利用化學還原劑聯胺(hydrazine, N2H4)將四氯金酸氫還原成純金原子。由於P4VP苯環之氮的孤電子對與金原子形成配位鍵結,所以在傅立葉紅外光譜儀(FT-IR)與紫外光譜儀(UV)吸收光譜上會有明顯的變化。就FT-IR光譜而言,其乙烯啶基之吸收光譜範圍1400 cm-1至1700cm-1中從原先未加入金原子之特徵吸收峰1495 cm-1與1558 cm-1分別會偏移至1503 cm-1與1561cm-1的特徵吸收峰,另外會有新特徵吸收峰1637cm-1產生;UV光譜因金的添加,約在550nm有特徵吸收峰。利用這兩種儀器,可以先對混成系統作初步鑑定,確認金是否鍵結於P4VP鏈段上。
利用穿透式電子顯微鏡 (TEM)與小角度X光散射(SAXS)觀察金經由共聚合物誘導之排列分佈情形與微結構,以具層板微結構之VP146CL91製備混成材料,依P4VP鏈段上氮與金原子數從5:1、7:1、10:1至13:1比例配製,結果得知金顆粒很小且分佈於P4VP相中,但會因添加金的量過多而使團聯共聚合物原本之有序微結構遭到破壞,且會形成較大的聚集金顆粒,然而減少金的添加量可以改善微結構的破壞程度與避免聚集顆粒。當以P4VP為分散相且為柱狀結構之VP32CL46團聯共聚合物與金(氮原子與金原子比例為5:1)混成後,金顆粒同樣很小且分佈於P4VP相中,但發現其系統微結構會因金加入造成相轉換現象產生,從原本的柱狀結構轉變成層板結構。並且藉由小角度X光散射1-D圖譜結果得知從原先柱狀結構之特徵峰1:√3比例而相轉變成1:2:3比例之層板結構特徵峰。
預測無機材料可使混成系統熱性質提升,藉由掃瞄微差熱卡(DSC)可以發現共聚合物VP146CL91隨著增加金的添加量,直接反應在玻璃轉化溫度Tg有某程度的正變提升,就本實驗結果,在P4VP團聯鏈段的Tg值可從107.70C隨著添加金的增多提升至162.50C。
高分子團聯共聚合物有著良好的成膜性,在製程上有相當大的應用性。當以PCL為六角圓柱之VP120CL46(fPCLV=28%)團聯共聚合物,選用選擇性溶劑:正丙醇(1-propanol),配製成1wt%高分子溶液,經由旋轉塗佈於基材上,能製備大範圍具微相分離結構的奈米圖案,經分析每個圓柱直徑約20nm,未來可選用所需的無機材料與VP120CL46團聯共聚合物進行有機-無機混成,製備具奈米陣列的薄膜。
Abstract
A series of poly(4-vinyl pyridine)-b-poly(ε-caprolactone) diblock copolymers, P4VP-PCL, has been synthesized through sequential living ring-opening polymerization and atom transfer radical polymerization. In the P4VP-PCL diblock copolymers, a hybridization of inorganic and organic components can be achieved by coordination of P4VP block with inorganic elements whereas PCL block can be degraded by hydrolysis. Consequently, the self-assembly P4VP-PCL/inorganic materials hybrid system gives rise to a promising and convenient way for the manufacturing of mesoporous and nanoarrayed hybrid materials.
A variety of self-assembly nanostructures including P4VP-rich cylinder, lamellae and PCL-rich cylinder has been obtained by simply varying the constituted volume fraction as evidenced by transmission electron microscopy and small-angle X-ray scattering. In-situ creation of gold (Au) nanoparticles in the phase-separated P4VP microdomains was formed by reduction of Au metal ions in the presence of N2H4 in dichloromethane as evidenced by Fourier transform infrared and ultraviolet experiments.
Interesting phase-separated morphological evolution was observed by introducing various amounts of gold metal ions with P4VP-PCL. For instance, a significant phase transformation from cylindrical to lamellar nanostructure can be identified for diblock copolymer of VP32CL46 (fPVPv=40%) blended with Au metal ion at the molar ratio of nitrogen to gold around 5. By contrast, phase-separated nanostructure of P4VP-PCL might be destructed by strong coordination of P4VP block and Au metal ions. At the same gold content, the ratio of nitrogen to gold around 5, the lamellar nanostructure of VP146CL91 (fPVPv=61%) became disordered. As expected, the hybrid morphology is strongly dependent upon the content of Au metal ions and the original nanostructure of block copolymers.
The observed morphological evolution for the hybrid system of P4VP-PCL/Au blends is consistent to the theoretical prediction on the basis of thermodynamics. Owing to the interaction of Au metal ion and the P4VP block, the introduction of Au nanoparticles having size below nanometer for the formed hybrid system is similar to the mixture of low molecular weight P4VP homopolymers and P4VP-PCL. As a result, the effected volume fraction of P4VP-rich phase is constantly increased with the added amount of reduction gold nanoparticles so as to induce phase transformation. On the other hand, the ordered self-assembly morphology might be destructed by the overdose of gold content due to overstretched P4VP chains within phase-separated microdomains.
It is also interesting to find that the introduction of inorganic materials to block copolymers might promote the thermal properties of self-assembly system. As observed, the glass transition temperature of P4VP block can be significantly increased by coordinating reduction gold nanoparticles due to the crosslinking-like effect for the P4VP chains
參考文獻
1. Kim, S. S.; Zhang W.; Pinavaia, T. J., Science 1998, 282, 1302.
2. Yang, H.; Coombs, N.; Ozin, G. A., Nature 1997, 386, 692.
3. Asefa, T.; MacLachlan, M. J.; Coombs, N.; Ozin, G. A. Nature 1999, 402, 867.
4. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Macromolecules 1996, 29, 5091.
5. Huo, Q. ; Margolese, D. I.; Ciesla, U.; Feng, P.; Gier, T. E.; Sieger, P.; Leon, R.; Petroff, P. M.; Schuth, F.; Stucky, G. D. , Nature 1994, 368, 317.
6. Stupp, S. I.; Braun, P. V., Science 1997, 277, 1242.
7. Tanev, P. T.; Pinnavaia, T. J., Science 1996, 271, 1267.
8. Tanev, P. T.; Liang, Y.; Pinnavaia, T. P., J. Am. Chem. Soc. 1997, 119, 8616.
9. Sone, E. D.; Zubarev E. R.; Stupp, S. I., Angew. Chem. Int. Ed. 2002, 41, 1705.
10. Whitesides G. M.; Mathias, J. P., Seto, C. T., Science 1991, 254, 1312.
11. Lehn, J. -M., Supramolecular Chemistry 1995, VCH, New York.
12. Stupp, S. I.; LeBonheur, Y.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz, A., Science 1997, 276, 384.
13. Zubarev, E. R.; Pralle, M. U.; Li, L.; Stupp, S. I., Science 1999, 283, 523.
14. Moore (Ed.), J. S., MRS Bull. 2000, 25, special issue.
15. Tew, G. N.; Pralle, M. U.; Stupp, S. I., J. Am. Chem. Soc. 1999, 121, 9852.
16. Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I., J. Am. Chem. Soc. 2001, 123, 4105.
17. Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I., Adv. Mater. 2002, 14, 198.
18. Antoneitti, M.; Wenz, E.; Bronstein, L.; Seregina, M. , Adv. Mater. 1995, 7, 1000.
19. Seregina, M. V.; Bronstein, L. M.; Platonova, O. A.; Chernyshov, D. M.; Valetsky P. M., Chem.Mater. 1997, 9, 923.
20. Spatz, J. P.;Sheiko S.; Moller, M., Macromolecule 1996, 29, 3220.
21. Spatz, J. P.; Roescher, A.; Moller, M., Adv. Mater. 1996, 8, 337.
22. Templin, M.; Franck, A.; Chesne, A. D.; Leist, H.,; Zhang, Y.; Ulrich, R.; Schadler, V.; Wiesner, U., Science 1997, 278, 1795.
23. Finnefrock, A. C.; Ulrich, R.; Toombes, G. E. S.; Gruner, S. M.; Wiesner U., J. Am. Chem. Soc. 1999, 121, 9852.
24. Bronstein, L. M.; Chernyshov, D. M.; Vorontsov, E.; Timofeeva, G. I.; Dubrovina, L. V.; Valetsky, P. M.; Kazakov, S.; Khokhlov, A. R., J. Phys. Chem. B 2001, 105, 9077.
25. Matejicek, P.; Humpolickova, J.; Procha´zka, K.; Tuzar, Z.; Spirkova, M.; Hof, M.; Webber, S. E., J. Phys. Chem. B 2003, 105, 9077.
26. Stepanek, M.; Podhajecka, K.; Tesarova, E.; Prochazka, K.; Tuzar, Z.; Brown, W., Langmuir 2001, 17, 4240.
27. Bronstein, L. M.; Chernyshov, D. M.; Timofeeva, G. I.; Dubrovina, L. V.; Valetsky, P. M.; Obolonkova, E. S.; Khokhlov, A. R., Langmuir 2000, 16, 3626.
28. Bronstein L. M.; Chernyshov D. M.; Timofeeva G. I.; Dubrovina L. V.; Valetsky, P. M.; Khokhlov A. R., JOURNAL OF COLLOID AND INTERFACE SCIENCE 2000, 230, 140.
29. Bailey, T. S.; Hardy, C. M.; Epps, T. H. III; Bates, F. S., Macromolecules 2002, 35, 7007.
30. oontongkong Y.; Cohen, R. E., Macromolecules 2002, 35, 3647
31. Liu, G.; Ding, J.; Hashimoto, T.; Kimishima, K.; Winnik, F. M.; Nigam, S., Chem. Mater. 1999, 11, 2233.
32. Boontongkong, Y.; Cohen, R. E.; Rubner, M. F., Chem.Mater. 2000, 12, 1628.
33. Moffitt, M.; Vali, H.; Eisenberg, A., Chem.Mater. 1998, 10, 1021.
34. Burke, S. E.; Eisenberg, A., Langmuir 2001, 17, 8341.
35. Bendejacq, D.; Ponsinet, V.; Joanicot, M.; Loo, Y. -L.; Register, R. A., Macromolecules 2002, 35, 6645.
36. Zhang, L.; Eisenberg, A., Macromolecules 1996, 29, 8805.
37. Zhang, L.; Shen, H.; Eisenberg, A., Macromolecules 1997, 30, 1001.
38. Ma, Y.; Cao, T.; Webber, S. E., Macromolecules 1998, 31, 1773.
39. Wang, T. C.; Rubner, M. F.; Cohen, R. E., Chem.Mater. 2003, 15, 299.
40. Sohn, B. H.; Seo, B. H., Chem.Mater. 2001, 13, 1752.
41. Bronstein, L.; Chernyshov, D.; Valetsky, P.; Tkachenko, N.; Lemmetyinen, H.; Hartmann, J.; Forster, S., Langmuir 1999, 15, 83.
42. Djalali, R.; Li, S. Y.; and Schmidt, M., Macromolecules 2002, 35, 4282.
43. Mossmer, S.; Spatz, J. P.; Moller, M.; Aberle, T.; Schmidt, J.; Burchard, W., Macromolecules 2000, 33, 4791.
44. Tsutsumi, K.; Funaki, Y.; Hirokawa, Y.; Hashimoto, T., Langmuir 1999, 15, 5200.
45. Ribbe, A. E.; Okumura, A.; Matsushige, K.; Hashimoto, T., Macromolecules 2001, 34, 8239.
46. Hashimoto, T.; Harada, M.; Sakamoto, N., Macromolecules 1999, 32, 6867.
47. Hashimoto, T.; Okumura, A.; Tanabe, D., Macromolecules 2003, 36, 7324.
48. Percy, M. J.; Barthet, C.; Lobb, J. C.; Khan, M. A.; Lascelles, S. F.; Vamvakaki, M.; Armes, S. P., Langmuir 2000, 16, 6913.
49. Amalvy, J. I.; Percy, M. J.; Armes, S. P.; Wiese, H., Langmuir 2001, 17, 4770.
50. Cho, G.; Jang, J.; Jung, S.; Moon, I. S.; Lee, J. S.; Cho, Y. S.; Fung, B. M.; Yuan, W. L.; O’Rear, E. A., Langmuir 2002, 18, 3430.
51. Fournaris, K. G.; Karakassides, M. A.; Petridis, D.; Yiannakopoulou, K., Chem.Mater. 1999, 11, 2372.
52. Moffitt, M.; Eisenberg, A., Chem.Mater. 1995, 7, 1178
53. Zhao, H.; Douglas, E. P., Chem.Mater. 2002, 14, 1418
54. Zhao, H.; Douglas, E. P.; Harrison, B. S.; Schanze, K. S., Langmuir 2001, 17, 8428.
55. Huang, J.; Lianos, P.; Yang, Y.; Shen, J., Langmuir 1998, 14, 4342.
56. Qi, L.; Co1lfen, H.; Antonietti, M., Nano Lett. 2001, 1, 61.
57. Hao, E.; Lian, T., Langmuir 2000, 16, 7879.
58. Kuo, S. W.; Wu, C. H.; Chang, F. C., Macromolecules 2004, 37, 192.
59. Valkama, S.; Ruotsalainen, T.; Kosonen, H.; Ruokolainen, J.; Torkkeli, M.; Serimaa, R.; Brinke, G. T.; Ikkala, O., Macromolecules 2003, 36, 3986.
60. Abes, J. I.; Cohen, R. E.; Ross, C. A., Chem.Mater. 2003, 15, 1125
61. Glass, R., Moller, M., Spatz, J. P., nanotechnology. 2003, 14, 1123.
62. Kurihara, K.; Kizling, J.; Stenius, P.; Fendler, J. H., J. Am. Chem. Soc. 1983, 105, 2574.
63. Bronstein, L.; Chernyshov, D.; Valetsky, P.; Tkachenko, N.; Lemmetyinen, H.; Hartmann, J.; Forster, S., Langmuir 1999, 15, 83.
64. Torigoe, K.; Esumi, K., Langmuir 1993, 9, 1164.
65. Selvan, S. T.; Hayakawa, T.; Nogami, M.; Mo1ller, M., J. Phys. Chem. B 1999, 103, 7441.
66. Youk, J. H.; Park, M. K.; Locklin, J.; Advincula, R.; Yang, J.; Mays, J., Langmuir 2002, 18, 2455
67. Wang, C.; Zhang, X.M.; Qian, X.F.; Xie, Y.; Wang, W.Z.; Qian, Y.T., Pergamon 1998, 33, 1747
68. Spatz, J. P.; Mossmer, S.; Hartmann, C.; Moller, M.; Herzog, T.; Krieger, M.; Boyen, H. G.; Ziemann, P.; Kabius, B., Langmuir 2000, 16, 407.
69. Li, Y. D.; Li, C.W.; Wang, H.R.; Li, L.Q.; Qian, Y.T., Materials Chemistry and Physics 1999, 59, 88.
70. Mossmer, S.; Spatz, J. P.; Moller, M.; Aberle, T.; Schmidt, J.; Burchard, W., Macromolecules 2000, 33, 4791.
71. Bates, F. S.; Fredrickson, G. H., Phys. Today 1999, 52, 32.
72. Bates, F. S., Science 1991, 251, 898.
73. Pochan, D. J.; Gido, S. P.; Pispas, S.; Mays, J. W.; Ryan, A. J.; Fairclough, J. P. A., Macromolecules 1996, 29, 5091.
74. Ryan, A. J.; Hamley, I. W., Morphology of block copolymers. In The physics of glassy polymers, (ed. R. N. Haward and R. J. Young). Chapman and Hall, London. 1997.
75. Khandpur, A. K.; Forster, S.; Bates, F. S.; Hamley, I. W.; Ryan, A. J.; Bras, W., Macromolecules 1995, 28, 8796.
76. Forster, S.; Khandpur, A. K.; Zhao, J.; Bates, F. S.; Hamley, I. W.; Ryan, A. J., Macromolecules 1994, 27, 6922.
77. Schulz, M. F.; Khandpur, A. K.; Bates, F. S.; Almdal, K.; Mortensen, K.; Hajduk, D. A.; Gruner, S. M., Macromolecules 1996, 29, 2857.
78. MacDonald, R. T.; McCarthy, S. P.; Gross, R. A., Macromolecules 1996, 29, 7356.
79. Liu, L.; Li, S.; Garreau, H.; Vert, M., Biomacromlecules 2000, 1, 350.
80. Zalusky, A. S.; Olayo-Valles, R.; Taylor C.; Hillmyer, M. A., J. Am. Chem. Soc. 2001, 123, 1519.
81. Li, S. J., Biomed. Mater. Res., Appl. Biomater. 1999, 48, 142.
82. Hakkarainen, M.; Karlsson, S.; Albertsson, A. C., Polymer 2000, 41, 2331.
83. 剪切力誘導PS-PLLA團聯共聚合物奈米微結構定向—奈米圖案成形模板之製備,范慧雯,中興大學化工所碩士論文
84. Lee, W. K.; Gardella, J. A., J., Langmuir 2000, 16, 3401.
85. Demicheli, A.; Russo, S.; Mariani, A., Polymer 2000, 41, 1481.
86. Zhang, Q.; Remsen, E. E.; Wooley, K. L., J. Am. Chem. Soc. 2000, 122, 3642.
87. Pasyuk, V. L.; Lauter, H. J.; Ausserre, D.; Gallot, Y.; Cabuil, V.; Kornilov, E. I.; Hamdoun, B., Physica B 1997, 241, 1092.
88. Pasyuk, V. L.; Lauter, H. J.; Ausserre, D.; Gallot, Y.; Cabuil, V.; Hamdoun, B.; Kornilov, E. I., Physica B 1998, 248, 243.
89. Huh, J.; Ginzburg, V. V.; Balazs, A. C., Macromolecules 2000, 33, 8085.
90. Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C., Science 2001, 292, 2469.
91. Lee, J. Y.; Thompson, R. B.; Jasnow, D.; Balazs, A. C., Macromolecules 2002, 35, 4855.
92. Thompson, R. B.; Ginzburg, V. V.; Matsen, M. W.; Balazs, A. C., Macromolecules 2002, 35, 1060.
93. Parka, C.; Yoonb, J.; Thomas, E. L., Polymer 2003, 44, 6725.
94. Cuenya, B. R.; Baeck, S. H.; Jaramillo, T. F.; McFarland, E. W., J. Am. Chem. Soc. 2003, 125, 12928.
95. Straub, M.; Ventura, M.; Gu, M., Thin Solid Films 2004, 453-454, 522.
96. Wu, C.; Woo, K. F.; Luo, X.; Ma, D. Z., Macromolecules 1994, 27, 6055.
97. Hattori, H., Adv. Mater. 2001, 13, 51.
98. Walheim, S.; Schaffer, E.; Mlynek, J.; Steiner, U., Science 1999, 283, 520.
99. Kravchenko, R.; Waymouth, R. M., Macromolecules 1998, 31, 1.
100. Small, P. A., J. Appl. Chem. 1953, 3, 71.
101. Brandrup, I.; Immergut, E. R.; Polymer Handbook 1966, Interscience, New York.