簡易檢索 / 詳目顯示

研究生: 林建弘
Lin, Chien-Hung
論文名稱: 應用於升壓轉換器之積體化智能型電源同步整流器設計
Design of Integrated Smart-Power Synchronous Rectifier in Boost Converter
指導教授: 黃智方
Huang, Chih-Fang
口試委員: 龔正
鄭博泰
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 56
中文關鍵詞: 升壓轉換器同步整流器閘極驅動
外文關鍵詞: boost converter, synchronous rectifier, gate driver
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在切換式轉換器的研究裡,為了達到比較低的導通電壓,可以選擇功率電晶體來取代同步整流器的位置,如此一來,藉由低導通壓降可以有效的降低功率損耗、提升轉換效率。典型使用功率電晶體的切換式轉換器需要供應電源,並且需要設計額外的閘極驅動電路、感測電路來控制電晶體在準確的工作週期間切換。
    在這篇論文裡,我們設計了一個智能型電源同步整流器,跟二極體同樣擁有兩個端點,但不需要額外的供應電源、控制電路或是感測電路就能進行自身偏壓、自身切換的動作,並且提供比二極體低的整流導通電壓。
    智能型電源同步整流器應用於升壓型切換式轉換器之積體化設計採用TSMC 0.25um 2.5V/5V/12V/40V 1p5m高壓製程製造。量測結果顯示,同樣0.2A的電流下基體二極體的導通壓降為0.83V,而智能型電源同步整流器則擁有0.12V的低導通壓降;輕載時(0.2A)漏電流損耗以及切換損耗佔了較重的比例,重載時(1.9A)則是由導通損耗主導,但對於升壓型轉換器的轉換效率皆在87%以上(0.2A-1.9A),最佳轉換效率則是負載0.6A時達到94.94%。


    中文摘要........................................................................................................................ I Abstract........................................................................................................................ II 誌謝..............................................................................................................................III 總目錄..........................................................................................................................IV 圖目錄..........................................................................................................................VI 表目錄.......................................................................................................................VIII 第1章. 緒論.................................................................................................................1 1.1 前言.................................................................................................................1 1.2 論文架構.........................................................................................................2 第2章. 直流對直流切換式電源供應器.....................................................................4 2.1 簡介.................................................................................................................4 2.2 升壓型轉換器操作分析.................................................................................5 2.3 輸入電流漣波.................................................................................................8 2.4 連續導通模式.................................................................................................8 2.5 非連續導通模式.............................................................................................9 2.6 連續導通模式與非連續導通模式的臨界點...............................................10 2.7 輸出電壓漣波...............................................................................................12 2.8 同步整流器...................................................................................................12 第3章. 新架構的升壓型切換式轉換器...................................................................14 3.1 組成架構與操作規格...................................................................................14 3.2 下橋閘極驅動電路.......................................................................................14 3.2.1 電壓位準移位器電路(LS) ................................................................15 3.2.2 低電壓鎖定電路(UVLO)..................................................................18 3.2.3 反相器鏈電路....................................................................................20 3.3智能型電源同步整流器................................................................................20 3.3.1 第一版電路設計與操作....................................................................20 3.3.2 第一版電路暫態分析........................................................................22 3.3.3 第二版電路設計與操作....................................................................25 3.3.4 第二版電路暫態分析........................................................................27 3.3.5基體二極體.........................................................................................28 3.3.6 反向漏電流........................................................................................28 3.3.7 耐壓考量............................................................................................29 3.4 下橋功率電晶體...........................................................................................29 V 3.5 擊穿電流.......................................................................................................31 3.6 暫態切換與功率損耗...................................................................................32 3.7 效率分析.......................................................................................................34 第4章. 模擬結果.......................................................................................................35 4.1 下橋閘極驅動電路.......................................................................................35 4.2 系統穩態模擬結果.......................................................................................36 4.3 轉換效率.......................................................................................................38 第5章. 量測結果與分析...........................................................................................39 5.1 量測介紹.......................................................................................................39 5.2 下橋閘極驅動電路量測...............................................................................41 5.2.1 遲滯現象............................................................................................41 5.2.2 驅動電流............................................................................................42 5.2.3 傳遞延遲時間....................................................................................43 5.3 升壓型轉換器量測.......................................................................................45 5.3.1 輸入電流漣波....................................................................................45 5.3.2 輸出電壓漣波....................................................................................46 5.3.3 等效串聯電阻損耗............................................................................47 5.3.4 損耗分佈............................................................................................48 5.3.5 轉換效率比較分析............................................................................50 5.3.6 整流電壓電流曲線圖........................................................................51 第6章. 結論與未來展望...........................................................................................53 6.1 結論...............................................................................................................53 6.2 未來展望.......................................................................................................54 參考文獻......................................................................................................................55

    [1] Chistophe P. Basso, “Switch-Mode Power Supplies Spice Simulations and Practical Designs”
    [2] Fairchild AN-6005 Synchronous buck MOSFET loss calculations with Excel model
    [3] Fairchild AN-9010 MOSFET Basics
    [4] Mohammad R. Hoque and Simon S. Ang, “A CMOS Under-voltage Lockout Circuit,” WCECS 2008, Oct. 22 - 24, 2008.
    [5] H. L. Pan, Y. C. Liang, and R. Oruganti, “Design of smart power synchronous rectifier,” IEEE Trans. Power Electron., vol. 14, no. 2, pp. 308–315, Mar. 1999.
    [6] C. Y. Lim, Y. C. Liang, G. S. Samudra, and N. Balasubramanian, “A CMOS compatible smart power synchronous rectifier,” in Proc. IEEE Power Electron. Spec. Conf., Korea, pp. 2646–2650, Jun. 2006.
    [7] Y. C. Liang, R. Oruganti, and T. B. Oh, “Design considerations of power MOSFET for high frequency synchronous rectification,” IEEE Trans. Power Electron., vol. 10, no. 3, pp. 388–395, May 1995.
    [8] C. Y. Lim, Y. C. Liang, G. S. Samudra , and N. Balasubramanian, “A Smart-Power Synchronous Rectifier by CMOS Process,” IEEE Trans. Power Electron., vol. 25, no. 9, Sep. 2010.
    [9] W. Eberle, Z. L. Zhang, Y. F. Liu, P. C. Sen, “A Current Source Gate Driver Achieving Switching Loss Savings and Gate Energy Recovery at 1-MHz,” IEEE Trans. Power Electron., vol. 23, no. 2, Mar. 2008.
    [10] T. Reiter, D. Polenov, Prö, H. Bstle, H. G. Herzog, “PWM Dead Time Optimization Method for Automotive Multiphase DC/DC-Converters,” IEEE Trans. Power Electron., vol. 25, no. 6, Jun. 2010.
    56
    [11] Vishay Siliconix Jess Brown, AN-608: Power MOSFET Basics: Understanding Gate Charge and Using It To Assess Switching Performance
    [12] Forghani-zadeh, H.P. ; Rincon-Mora, G.A., “Current-sensing techniques for DC-DC converters,” Circuits and Systems, 2002. MWSCAS-2002. The 2002 45th Midwest Symposium on

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE