研究生: |
陳彥羽 Yen-Yu Chen |
---|---|
論文名稱: |
各種因素對反應器壓力槽低合金鋼在沸水式反應器條件下環境促進破裂之裂縫成長速率的影響研究 Study on Various Factors Affecting the Crack Growth Rates of the Environmentally Assisted Cracking for the Reactor Pressure Vessel Low Alloy Steels under Boiling Water Reactor Conditions |
指導教授: |
施漢章
Han-Chan Shih |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 150 |
中文關鍵詞: | 裂縫成長速率 、輕水式反應器 、環境促進破裂 、腐蝕疲勞 、應力腐蝕破裂 、反應器壓力槽 、低合金鋼 、沸水式反應器 、應力強度因子範圍 、週期性部分卸除負荷 、溶氫 、電化學電位 、正常水化學 、加氫水化學 |
外文關鍵詞: | crack growth rate, light water reactor, environmentally assisted cracking, corrosion fatigue, stress corrosion cracking, reactor pressure vessel, low-alloy steel, boiling water reactor, stress intensity factor range, periodic partial unloading, dissolved hydrogen, electrochemical potential, normal water chemistry, hydrogen water chemistry |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
裂縫成長速率(Crack Growth Rate,簡稱CGR)的量測是了解各種使用於核電廠輕水式反應器(Light Water Reactor,簡稱LWR)環境中材料之環境促進破裂(Environmentally Assisted Cracking,簡稱EAC)的一種重要工具。此外,這種量測也被用來產生腐蝕疲勞(Corrosion Fatigue,簡稱CF)與應力腐蝕破裂(Stress Corrosion Cracking,簡稱SCC)的量化數據。而這些數據基本上不但可用來進行結構的完整性分析,也可針對已存在或假設會產生的缺陷進行材料使用壽命(lifetime)的可靠度評估。
本論文主要是論述兩種分別擁有低硫含量(A508 Cl.2, 0.008 wt.%)或高硫含量(A533B Cl.1, 0.018 wt.%)之核子級反應器壓力槽(Reactor Pressure Vessel,簡稱RPV)低合金鋼(Low-Alloy Steel,簡稱LAS),在模擬沸水式反應器(Boiling Water Reactor,簡稱BWR) 288oC高溫水環境下的CF與SCC行為。實驗結果顯示:RPV LAS之CGR受到各種機械因素如應力強度因子範圍(stress intensity factor range,簡稱∆K)、負荷頻率(loading frequency,簡稱ν)、上升時間(rise time,簡稱ΔtR),以及在最大負荷處的維持時間(hold time,簡稱ΔtH)等的影響。在CF的試驗中,結果發現在相同的水質與負荷條件下,CGR會隨著∆K的上升而增加。此外,若在∆K值相似的情形下,ν越高(或ΔtR越短),則CGR會越快。而在SCC的試驗中,則可觀察到若使用週期性部分卸除負荷(Periodic Partial Unloading,簡稱PPU)的情形之下,ΔtH越長,則CGR會越慢。
另一方面,本研究亦發現不論在CF或SCC的試驗中,高溫水中的溶氫(Dissolved Hydrogen,簡稱DH)會降低材料的電化學電位(Electro-Chemical Potential,簡稱ECP),進而能夠有效降低CGR。DH對CGR抑制效應的機制與裂縫尖端(crack tip)附近的水化學狀況也將在本論文中作探討。又,在BWR之正常水化學(Normal Water Chemistry,簡稱NWC)環境中,鋼材中的含硫量於低頻負荷(例如ν < 4×10-3 Hz)、低流速的氧化(例如ECP = 100-200mVSHE)條件下對裂縫成長速率的影響並不十分明顯。
當各種測試試片藉由特殊的電化學方法(ENDOX treatment)移除氧化物以估算其平均的裂縫長度之後,實驗結果發現:除了少數處於加氫水化學(Hydrogen Water Chemistry,簡稱HWC)的數據以外,多數的CGR數據均可與一些適用於BWR環境下的預測模型相比較。然而,目前實驗所得到在低頻負荷(ν = 4×10-4 Hz)下之CF CGR的數據,並不能被Eason所發展的預測模型所規範。此外,大多數的SCC CGR之數據,並不能被MPA Stuttgart模型所涵蓋。
Crack growth rate (CGR) measurement is an important tool to understand the behaviors of the environmentally assisted cracking (EAC) of various materials used in light water reactor (LWR) environments. In addition, such measurements are also used to produce quantitative data on corrosion fatigue (CF) and stress corrosion cracking (SCC). This type of data is essential for structural integrity analyses, as well as for the lifetime estimation and reliability of existing or postulated defects.
In this paper, behaviors of CF and SCC experiments with two different nuclear grade reactor pressure vessel (RPV) low-alloy steels (LAS) with low- (A508 Cl.2, 0.008 wt.%) or high-sulfur (A533B Cl.1, 0.018 wt.%) steel content at 288°C under simulated boiling water reactor (BWR) conditions are presented. CGR of RPV LAS was found to be dependent upon various mechanical factors such as the stress intensity factor range (∆K), loading frequency (ν), rise time (ΔtR), and hold time (ΔtH) at maximum load. In CF tests, it was observed that the CGR increased as ∆K increased under the same water quality and loading conditions. If ∆K was similar, the higher the ν (or the shorter ΔtR), the higher was the CGR. In SCC tests, the longer the ΔtH, the slower the CGR was under periodic partial unloading (PPU) conditions.
On the other hand, it was found that dissolved hydrogen (DH), which lowered the electrochemical potential (ECP), could effectively suppress the CGR in either CF or SCC tests. The mechanism of the suppressive effect of DH on the CGR and the water chemistry conditions near the crack tip was also discussed in this paper. And, effect of steel sulfur content on CGR was less pronounced under low-frequency loading (e.g., ν ≤ 4×10-3 Hz) and low-flow, oxidizing (e.g., ECP = 100-200mVSHE) BWR/normal water chemistry (NWC) conditions.
After mean crack lengths of various test specimens were evaluated using a specific electrochemical oxide removal method (ENDOX treatment), many CGR data from this study were observed to be comparable with those obtained from some well-known CGR prediction models for BWR environments except in the hydrogen water chemistry (HWC) condition. However, the current CF CGR data with a low loading frequency (ν = 4×10-4 Hz) were not bounded by the model developed by Eason. Additionally, most of our SCC CGR data cannot be encompassed by the MPA Stuttgart models.
1. ASME Boiler and Pressure Vessel Code, Section III, “Rules for Construction of Nuclear Power Plant Components, Division 1”, Appendix G, “Protection Against Nonductile Failure”, the American Society of Mechanical Engineers, New York, 1995.
2. ASME Boiler and Pressure Vessel Code, Section III, “Rules for Construction of Nuclear Power Plant Components, Division 1”, Subsection NB, Class 1 Components, the American Society of Mechanical Engineers, New York, 1995.
3. ASME Boiler and Pressure Vessel Code, Section XI, Rules for Inservice Inspection of Nuclear Power Plant Components, Appendix A, “Analysis of Flaws”, the American Society of Mechanical Engineers, New York, 1995.
4. U.S. Nuclear Regulatory Commission (NRC), Generic Safety Issue (GSI) No. 166, “Adequacy of Fatigue Life of Metal Components”.
5. U.S. Nuclear Regulatory Commission (NRC), Generic Safety Issue (GSI) No. 190, “Fatigue Evaluation of Metal Components for 60-Year Plant Life”.
6. TPC83-05, “核一廠反應器疲勞暫態分析及次數統計”,工研院工材所,1994年6月。
7. TPC84-05, “核二廠反應器疲勞暫態分析及次數統計”,工研院工材所,1995年6月。
8. TPC86-08, “核三廠一級設備應力分析及使用因子評估”,工研院工材所,1997年6月。
9. TPC82-03, “反應器壓力容器及內部組件結構完整性研究(一)”,工研院工材所,1993.06。
10. TPC82-03, “反應器壓力容器及內部組件結構完整性研究(二)”,工研院工材所,1994.06。
11. TPC82-03, “反應器壓力容器及內部組件結構完整性研究(三)”,工研院工材所,1995.06。
12. T. Kondo, H. Nakajima, and R. Nagasaki, ”Metallographic Investigation on the Cladding Failure in the Pressure Vessel of a BWR”, Nucl. Eng. Des. 16 (1971): p. 205.
13. W. H. Bamford, “Technical Basis for Revised Reference Crack Growth Rate Curves for Pressure Boundary Steels in LWR Environment”, J. Press. Vessel Technol. 102 (1980): p. 433.
14. J. D. Atkinson and J. E. Forrest, “Factors Influencing the Rate of Growth of Fatigue Cracks in RPV Steels Exposed to a Simulated PWR Primary Water Environment”, Corros. Sci. 25 (1985): p. 607.
15. J. D. Gilman, “Subcritical Crack Growth”, Proceedings of the Second International Atomic Energy Agency (IAEA) Specialists Meeting, 15-17 May 1985, Vol. 2, Sendai Japan, p. 365, edited by W. H. Cullen, NUREG/CP-0067, April 1986.
16. E. D. Eason, S. P. Andrew, S. B. Warmbrodt, and E. E. Nelson, “Analysis of Pressure Vessel Steel Fatigue Tests in Air”, Nucl. Eng. Des. 115 (1989): p. 23.
17. E. D. Eason, E. E. Nelson, and J. D. Gilman, “Modeling of Fatigue Crack Growth Rate for Ferritic Steels in Light Water Reactor Environments”, Nucl. Eng. Des. 184 (1998): p. 89.
18. H. Hänninen, K. Törrönen, M. Kemppainen, and S. Salonen, “On the Mechanisms of Environment Sensitive Cyclic Crack Growth of Nuclear Reactor Pressure Vessel Steels”, Corros. Sci. 23 (1983): p. 663.
19. F. P. Ford and P. W. Emigh, “The Prediction of the Maximum Corrosion Fatigue Crack Propagation Rate in the Low Alloy Steel – De-oxygenated Water System at 288oC”, Corros. Sci. 25 (1985): p. 673.
20. D. R. Tice, “A Review of the U.K. Collaborative Programme to Test the Effects of Mechanical and Environmental Variables on Environmentally Assisted Crack Growth of PWR Pressure Vessel Steels”, Corros. Sci. 25 (1985): p. 705.
21. P. M. Scott, “A Review of Environmental Effects on Pressure Vessel Integrity”, Proceedings of the Third International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, ed. by G. J. Theus and J. R. Weeks, TMS, MA, USA, 1988, pp. 15.
22. F. P. Ford, “Status of Research on Environmentally Assisted Cracking in LWR Pressure Vessel Steels”, J. Press. Vessel Technol. 110 (1988): p. 113.
23. F. P. Ford and P. L. Andresen, ”Development and Use of a Predictive Model of Crack Propagation in 304/316L, A533B/A508 and Inconel 600/182 Alloys in 288oC Water”, Proceedings of the 3rd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, Edited by G. J. Theus and J. R. Weeks, The Metallurgical Society (TMS), 1988, pp. 789.
24. P. M. Scott, “Data Acquisition”, Int. J. Pres. Ves. & Piping 40 (1989): p. 335.
25. E. Tenckhoff, M. Erve, E. Lenz, and G. Vazoukis, “Environmentally Assisted Crack Growth in Low Alloy Steels – Results and Their Relevance to LWR Components”, Nucl. Eng. Des. 119 (1990): p. 371.
26. W. A. Van Der Sluys and R. H. Emanuelson, “Fatigue Crack Growth in Reactor Pressure Vessel Materials and Light Water Reactor Environments”, Nucl. Eng. Des. 119 (1990): p. 379.
27. Turnbull, “Modeling of Environmentally Assisted Cracking”, Corros. Sci. 34 (1993): p. 921.
28. D. Blind, F. Hüttner, A. Wünsche, K. Küster, H. P. Seifert, J. Heldt, A. Roth, P. Karjalainen-Roikonen, and U. Ehrnstén, “European Round Robin on Constant Load EAC Tests of Low Alloy Steel under BWR Conditions”, Proceedings of Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, Edited by F. P. Ford, S. M. Bruemmer, and G. S. Was, ANS/NACE/TMS, August 1-5,1999, Newport Beach, California, USA, pp. 911.
29. H. P. Seifert and S. Ritter, “PSI Contribution to the CASTOC Round Robin on EAC of Low-Alloy RPV Steels under BWR Conditions”, PSI-report No. 01-08, August 2001, ISSN 1019-0643, pp. 1.
30. H. P. Seifert, “Literature Survey on the Stress Corrosion Cracking of Low-Alloy Steels in High-Temperature Water”, PSI Bericht 02-06, February 2002, ISSN 1019-0643.
31. Cases of ASME Boiler and Pressure Vessel Code – Case N-643, “Fatigue Crack Growth Rate Curves for Ferritic Steels in PWR Water Environment Section XI, Division 1”, ASME Committee, 2001.
32. P. M. Yuzawich and C. W. Hughes, “An Improved Technique for Removal of Oxide Scale from Fractured Surface of Ferrous Materials”, Pract. Metallogr. 15 (1978): p. 184.
33. T. U. Marston and R. L. Jones, “Materials Degradation Problems in the Advanced Light Water Reactors”, Proceedings of the 5th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, TMS, pp. 3.
34. F. P. Ford, P. L. Andresen, D. Weinstein, S. Ranganath, and R. Pathania, “Stress Corrosion Cracking of Low-Alloy Steels in High Temperature Water”, Proceedings of Fifth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, TMS, Monterey, CA, USA, August 25-29, 1991, pp. 561.
35. S. Ritter and H. P. Seifert, “Strain-Induced Corrosion Cracking of Low-Alloy Reactor Pressure Vessel Steels under BWR Conditions”, CORROSION/2002, paper no. 02516 (Houston, TX: NACE, 2002), p. 1-18.
36. T. Shoji, S. Aiyama, H. Takahashi, and M. Suzuki, “Effects of Stress Intensity Rate K and Stress Ratio R on Corrosion Fatigue Crack Growth Enhancement Bellow KISCC”, Corrosion 34 (1978): p. 276.
37. P. M. Scott, A. E. Truswell, and S. G. Druce, “Corrosion Fatigue of Pressure Vessel Steels in PWR Environments-Influence of Steel Sulfur Content”, Corrosion 40 (1984): p. 350.
38. T. A. Prater, W. R. Catlin, and L. F. Coffin, “Effect of Hydrogen Additions to Water on the Corrosion Fatigue Behavior of Nuclear Structural Materials”, Proceedings of Second International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, TMS, Breckenridge, Monterey, CA, September, 1985, pp. 615.
39. J. H. Bulloch, “A Fractographic Assessment of Sulfide Inclusion Distributions and their Influence in Promoting Environmentally Assisted Crack Growth in Ferritic Pressure Vessel Steels”, Int. J. Pres. Ves. & Piping 54 (1993): p. 149.
40. Y. Katada and N. Nagata, “The Effect of Temperature on Fatigue Crack Growth Behavior of a Low Alloy Pressure Vessel Steel in a Simulated BWR Environment”, Corros. Sci. 25 (1985): p. 693.
41. D. R. Tice, D. Worswick, P. Hurst, and H. Fairbrother, ”Influence of Mean Stress and Temperature on Corrosion Fatigue Crack Growth of Reactor Pressure Vessel Steels”, Proceedings of Sixth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, Edited by R. E. Gold and E. P. Simonen, The Minerals, Metals & Materials Society (TMS), 1993, pp. 19.
42. J. D. Atkinson and Z. Chen, “The Effect of Temperature on Corrosion Fatigue Crack Propagation in Reactor Pressure Vessel Steels”, Proceedings of Sixth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, Edited by R. E. Gold and E. P. Simonen, The Minerals, Metals & Materials Society (TMS), 1993, pp. 29.
43. T. A. Auten and J. V. Monter, “Temperature and Environmentally Assisted Cracking in Low Alloy Steel”, Proceedings of Seventh International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, The Minerals, Metals & Materials Society (TMS)/NACE International, Breckenridge, Colorado, August 7-10, 1995, pp. 1145.
44. J. D. Atkinson, J. Yu, and Z. Y. Chen, “An Analysis of the Effects of Sulfur Content and Potential on Corrosion Fatigue Crack Growth in Reactor Pressure Vessel Steels”, Corros. Sci. 38 (1996): p. 755.
45. Y. Katada and S. Sato, “Effect of Temperature on Corrosion Fatigue Behavior of Low Alloy Pressure Vessel Steels in High Temperature Water”, Proceedings of Eighth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, TMS, 1997, pp. 916.
46. J. D. Atkinson, J. Yu, Z. J. Zhao, “Characterization of the Effect of Loading Frequency on Corrosion Fatigue Crack Growth Rate in RPV Steels”, Proceedings of Eighth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, TMS, 1997, pp. 924.
47. L. A. James and W. C. Moshier, “The Effect of Potential upon the High-Temperature Fatigue Crack Growth Response of Low-Alloy Steels, Part 1: Crack Growth Results”, Corros. Sci. 41 (1999): p. 373.
48. W. C. Moshier and L. A. James, “The Effect of Potential on the High-Temperature Fatigue Crack Growth Response of Low-Alloy Steels, Part 2: Sulfide—Potential Interaction”, Corros. Sci. 41 (1999): p. 401.
49. S. G. Lee and I. S. Kim, “Strain Rate Effects on the Fatigue Crack Growth of SA508 Cl.3 Reactor Pressure Vessel Steel in High-Temperature Water Environment”, J. Press. Vessel Technol. 123 (2001): p. 173.
50. Y. J. Kim, “Role of Hydrogen Peroxide and Its Decomposition in BWRs”, Proceedings of Tenth International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, NACE/TMS/ANS, August 6-10, 2001, Lake Tahoe, Nevada, USA.
51. X. Q. Wu and Y. Katada, “Role of Inclusions and Carbide Bands in Corrosion Fatigue of Pressure Vessel Steel in High-Temperature Water”, Corrosion 60 (2004): pp. 1045.
52. Y. Y. Chen, L. H. Wang, J. C. Oung, and H. C. Shih, “Influences of Stress Intensity Factor and Dissolved Hydrogen on the Fatigue Crack Growth Behavior of Low-Alloy Steel in Boiling Water Reactors”, Corrosion 61 (2005): p. 273.
53. H. Choi, F. H. Beck, Z. Szklarska-Smialowska, and D. D. Macdonald, “Stress Corrosion Cracking of ASTM A508 Cl 2 Steel in Oxygenated Water at Elevated Temperatures”, Corrosion 38 (1982): p. 136.
54. L. G. Ljungberg, “SCC Testing of Pipe Materials in BWR Environment”, Nucl. Eng. Des. 81 (1984): p. 121.
55. J. Congleton, H. C. Shih, T. Shoji and R. N. Parkins, “The Stress Corrosion Cracking of Type 316 Stainless Steel in Oxygenated and Chlorinated High Temperature Water”, Corros. Sci. 25 (1985): p. 769.
56. P. Hurst, P. Banks, G. Pemberton, and A. S. Raffel, “Stress Corrosion Behavior of A533B and A508-III Steels and Weldments in High Temperature Water Environments”, Proceedings of Second International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, Breckenridge, Monterey, CA, September, 1985, pp. 645.
57. M. O. Speidel and R. M. Magdowski, “Stress Corrosion Cracking of Nuclear Reactor Pressure Vessel and Piping Steels”, Int. J. Pres. Ves. & Piping 34 (1988): p. 119.
58. P. M. Scott and D. R. Tice, “Stress Corrosion in Low Alloy Steels”, Nucl. Eng. Des. 119 (1990): p. 399.
59. W. A. Van Der Sluys, and R. Pathania, “Studies of Stress Corrosion Cracking in Steels Used for Reactor Pressure Vessels”, Proceedings of Fifth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, TMS, Monterey, CA, USA, August 25-29, 1991, pp. 571.
60. P. L. Andresen, “Application of Noble Metal Technology for Mitigation of Stress Corrosion Cracking in BWRs”, Proceedings of Seventh International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, The Minerals, Metals & Materials Society (TMS)/NACE International, Breckenridge, Colorado, August 7-10, 1995, pp. 563.
61. P. L. Andresen and L. M. Young, “Characterization of the Roles of Electrochemistry, Convection and Crack Chemistry in Stress Corrosion Cracking”, Proceedings of Seventh International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, The Minerals, Metals & Materials Society (TMS)/NACE International, Breckenridge, Colorado, August 7-10, 1995, pp. 579.
62. Y. Wada, N. Shigenaka, N. Uetake, and S. Uchida, “Numerical Simulation of SCC Environment in a BWR Primary Coolant System”, Proceedings of Eighth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, TMS, 1997, pp. 574.
63. F. P. Ford, R. M. Horn, J. Hickling, R. Pathania, and G. Bruemmer, “Stress Corrosion Cracking of Low Alloy Steels under BWR Conditions; Assessment of Crack Growth Rate Algorithms”, Proceedings of Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, Edited by F. P. Ford, S. M. Bruemmer, and G. S. Was, ANS/NACE/TMS, August 1-5, 1999, Newport Beach, California, USA, pp. 855.
64. J. Heldt and H. P. Seifert, “Stress Corrosion Cracking of Reactor Pressure Vessel Steels under Boiling Water Reactor Conditions”, Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, Edited by F. P. Ford, S. M. Bruemmer, and G. S. Was, ANS/NACE/TMS, August 1-5,1999, Newport Beach, California, USA, pp. 901.
65. P. L. Andresen, “Perspective and Direction of Stress Corrosion Cracking in Hot Water”, Proceedings of Tenth International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, NACE/TMS/ANS, August 6-10, 2001, Lake Tahoe, Nevada, USA.
66. J. Heldt and H. P. Seifert, “Stress Corrosion Cracking of Low-Alloy, Reactor-Pressure-Vessel Steels in Oxygenated, High-Temperature Water”, Nucl. Eng. Des. 206 (2001): p. 57.
67. P. L. Andresen, “Effects of Testing Characteristics on Observed SCC Behavior in BWRs”, CORROSION/98, paper no. 137 (Houston, TX: NACE, 1998), p. 137.1-137.16.
68. H. P. Seifert and S. Ritter, “Evaluation and Assessment of the BWR VIP 60 SCC Crack Growth Curves for Low-Alloy Steels under BWR/NWC Conditions”, International Cooperative Group on Environmentally Assisted Cracking (ICG-EAC) Meeting, May 11-16, 2003, Ottawa, Canada.
69. J. Hickling and D. Blind, “Strain-Induced Corrosion Cracking of Low-Alloy Steels in LWR Systems – Case Histories and Identification of Conditions Leading to Susceptibility”, Nucl. Eng. Des. 91 (1986): p. 305.
70. E. Lenz and N. Wieling, “Strain-Induced Corrosion Cracking of Low-Alloy Steels in LWR-Systems – Interpretation of Susceptibility by Means of a Three Dimensional (T, ė, Dissolved Oxygen) Diagram”, Nucl. Eng. Des. 91 (1986): p. 331.
71. J. Hickling, “Strain-Induced Corrosion Cracking of Low-Alloy Steels under BWR Conditions: Are There Still Open Issues?”, Proceedings of Tenth International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, NACE/TMS/ANS, August 6-10, 2001, Lake Tahoe, Nevada, USA.
72. H. P. Seifert, S. Ritter, and J. Heldt, “Strain-Induced Corrosion Cracking of Low-Alloy Reactor Pressure Vessel Steels under BWR Conditions”, Proceedings of Tenth International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, NACE/TMS/ANS, August 6-10, 2001, Lake Tahoe, Nevada, USA.
73. Proceedings of the 2nd IAEA Specialists’ Meeting on Subcritical Crack Growth, Sendai, Japan, 15-17 May 1985 (NUREG/CP 0044).
74. C. Amzallag and J. L. Bernard, Proceedings of IAEA Specialists Meeting on Subcritical Crack Growth, Freiburg, 1981, pp. 412.
75. G. Slama and P. Rabbe, Structural Integrity of Light Water Reactor Components (eds. L. E. Steele, K. E. Stahlkopf and L. H. Karsson), Applied Science Publisher, London (1982), pp. 311.
76. W. H. Bamford and L. J. Ceschini, Structural Integrity of Water Reactor Pressure Boundary Components, NUREG/CR-1783, NRL Memorandum Report 4500, Washington, D.C. (1980).
77. D. I. Swan and O. J. V. Chapman, “Modeling of Sulfide Inclusion Distribution in Relation to the Environmentally Assisted Cracking of Low-Alloy Steels in a PWR Environment”, ASTM STP 1049 (Philadelphia, PA: ASTM, 1990), pp. 283.
78. T. Shoji, S. Moriya, and M. Tada, “Computer Simulation of Environmentally Assisted Cracking of RPV Steels in LWR Environments”, Proceeding of 4th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors (Houston, TX: NACE, 1990), pp. 8.28.
79. P. Cambrade, M. Foucault, P. Marcus, and G. Slama, “On the Role of Sulfur on the Dissolution of Pressure Vessel Steels at the Tip of a Propagating Crack in PWR Environments”, Proceeding of 4th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors (Houston, TX: NACE, 1990), pp. 8.48.
80. W. A. Van der Sluys and R. H. Emanuelson, “Environmental Acceleration of Fatigue Crack Growth in Reactor Pressure Vessel Materials and Environments”, ASTM STP 1049 (Philadelphia, PA: ASTM, 1990), pp. 117.
81. P. L. Andreson and L. M. Young, “Crack Tip Microsampling and Growth Rate Measurements in Low-Alloy Steel in High-Temperature Water”, Corrosion 51 (1995): p. 223.
82. E. A. Little and J. A. Hudson, “Role of Metallurgical Parameters in the Dynamic Strain Aging of A533B Nuclear Steel”, Proceedings of the 2nd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, TMS, 1985, pp. 640.
83. I. S. Kim and S. S. Kang, “Dynamic Strain Aging in SA508-Class 3 Pressure Vessel Steel”, Int. J. Pres. Ves. & Piping 62 (1995): p. 123.
84. ASM Handbook, “Mechanical Testing and Evaluation”, vol. 8 (Materials Park, OH: ASM International, 2000).
85. F. P. Ford, “Quantitative Prediction of Environmentally Assisted Cracking”, Corrosion 52 (1996): p. 375.
86. ASTM Standard, E 399 – 90, “Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials”, in Annual Book of ASTM Standards, Vol. 03.01 (West Conshohocken, PA: ASTM International, 1998), p. 413-443.
87. F. P. Ford, D. F. Taylor, P. L. Andresen, and R. G. Ballinger, “Corrosion-Assisted Cracking of Stainless and Low-Alloy Steels in LWR Environments”, Final Report, EPRI RP2006-6, Report NP-5064-M, Electric Power Research Institute (1987).
88. F. P. Ford, “Environmentally-Assisted Cracking of Low-Alloy Steels”, Final Report, EPRI NP-7473-L, Electric Power Research Institute (1992).
89. G. Gabetta, E. Caretta, “Corrosion Chemistry within Pits, Crevices and Cracks”, Her Majesty’s Stationery Office, London, 1987, p. 287.
90. K. Kussmaul, D. Blind, and V. Läpple, “New Observations on the Crack Growth Rate of Low Alloy Nuclear Grade Ferritic Steels under Constant Active Load in Oxygenated High-Temperature Water”, Nucl. Eng. Des. 168 (1997): p. 53.
91. N. G. Cofie, A. J. Giannuzzi, D. E. Delwiche, B. M. Gordon, R. Horn, F. P. Ford, W. Cheng, A. P. L. Turner, J. Broussard, J. Hickling, and A. Peterson, “Evaluation of Stress Corrosion Crack Growth in Low Alloy Steel Vessel Materials in the BWR Environment (BWRVIP-60)”, Final Report, EPRI TR-108709, Electric Power Research Institute (1999).
92. W. A. Van Der Sluys, E. D. Eason, and J. D. Gilman, “Environment-Sensitive Cracking of Pressure Vessel Steels”, Proceedings of Fourth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, Edited by D. Cubicciotti (Houston, TX: NACE, 1990), pp. 1.37-1.62.
93. J. D. Atkinson, J. Yu, Z. Y. Chen, and Z. J. Zhao, “Modeling of Corrosion Fatigue Crack Growth Plateau for RPV Steels in High Temperature Water”, Nucl. Eng. Des. 184 (1998): p. 13.
94. L. A. James, “The Effect of Temperature and Cyclic Frequency upon Fatigue Crack Growth Behavior of Several Steels in an Elevated Temperature Aqueous Environment”, J. Press. Vessel Technol. 116 (1994): p. 122.
95. ASTM Standard, G 1 – 90, “Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens”, in Annual Book of ASTM Standards, Vol. 03.02 (West Conshohocken, PA: ASTM International, 1998), p. 1-7.
96. C. S. Kumai and T. M. Devine, “Oxidation of Iron in 288oC, Oxygen-Containing Water”, Corrosion 61 (2005): p. 201.
97. J. Robertson, “The Mechanism of High Temperature Aqueous Corrosion of Steel”, Corros. Sci. 29 (1989): p. 1275.
98. J. E. Maslar, W. S. Hurst, W. J. Bowers, J. H. Hendricks, M. I. Aquino, “In Situ Raman Spectroscopic Investigation of Aqueous Iron Corrosion at Elevated Temperatures and Pressures”, J. Electrochem. Soc. 147 (2000): p. 2532.
99. K. Kussmaul. D. Blind, J. Jansky, and R Rintamaa, “Formation and Growth of Cracking in Feed Water Pipes and RPV Nozzles”, Nucl. Eng. Des. 81 (1984): p. 105.
100. “Carbon and Low-Alloy Steel Castings”, Metals Handbook – Corrosion, 9th ed., Vol. 13, ASM International (1988): p. 170.
101. L. W. Niedrach, “A New Membrane-Type pH Sensor for Use in High Temperature – High Pressure Water”, J. Electrochem. Soc. 127 (1980): p. 2122.
102. ASTM Standard, E 647 – 95a, “Standard Test Method for Measurement of Fatigue Crack Growth Rates”, in Annual Book of ASTM Standards, Vol. 03.01 (West Conshohocken, PA: ASTM International, 1998), p. 562-598.
103. D. D. MacDonald, A. C. Scott, and P. Wentreck, “External Reference Electrodes for Use in High Temperature Aqueous Systems”, J. Electrochem. Soc. 126 (1979): p. 908.
104. Y. J. Kim, “Characterization of the Oxide Film Formed on Type 316 Stainless Steel in 288oC Water in Cyclic Normal and Hydrogen Water Chemistries”, Corrosion 51 (1995): p. 849.
105. W. Elber, "The Significance of Fatigue Crack Growth", ASTM STP 486, (1971): p. 230.
106. 王立華,“環境促進腐蝕對反應器壓力槽材料之老化影響評估(一)”, 工研院工材所,2002年10月。
107. 王立華,“環境促進腐蝕對反應器壓力槽材料之老化影響評估(二)”, 工研院工材所,2003年10月。
108. C. M. Chen, K. Aral, G. J. Theus, “Computer-Calculated Potential pH Diagrams to 300°C,” Final Report, EPRI NP-3137, vol. 2, Electric Power Research Institute, June 1983, pp. 5-3, 5-14.