研究生: |
劉伊珊 Liu, I-Shan |
---|---|
論文名稱: |
XIAP 於 T 細胞與 IL-6 活化之訊息傳遞路徑探討 The role of XIAP in T cell receptor and IL-6 activated signaling pathway |
指導教授: |
謝琬甄
Hsieh, Wan-Chen |
口試委員: |
徐子勝
Hsu, Tzu-Sheng 林珮君 Lin, Pei-Chun 張書蓉 Chang, Shu-Jung |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子與細胞生物研究所 Institute of Molecular and Cellular Biology |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 46 |
中文關鍵詞: | XIAP 、T細胞 、IL-6 、STAT3 、MAPK 、mTOR |
外文關鍵詞: | XIAP, T cell, IL-6, STAT3, MAPK, mTOR |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
X-linked inhibitor of apoptosis protein (XIAP)為抑制細胞凋亡家族成員的⼀員,可直接抑制caspase蛋⽩質,並傳遞⾮caspase蛋⽩質路徑訊號。在⾻髓細胞中,XIAP透過其E3泛素連接酶特性參與多個不受caspase蛋⽩質抑制的細胞傳遞訊號路徑。先前實驗室研究已知XIAP參與了T細胞受體(TCR)和IL-6 細胞激素共同活化的訊號傳遞路徑。然⽽在TCR和IL-6 共同活化下, XIAP 詳細作⽤機制仍不明確。在本篇研究中,我們使⽤了XIAP 下調的DO11.10 細胞來探討XIAP 在TCR活化或是IL-6 刺激所扮演的⾓⾊。實驗結果顯⽰XIAP 參與了TCR 活化與TCR 加上IL-6 活化所引起的STAT3 磷酸化。我們也發現,經TCR 活化和TCR 加上IL-6 活化後,MAPK 路徑並不受XIAP 影響。此外,在IL-6 刺激下,XIAP 影響了經TCR活化的mTOR 路徑,但僅經TCR活化的mTOR 路徑則不受XIAP影響。同時,我們也發現到XIAP 下調後發現TGF-β 的RNA表達量增加。這些結果顯⽰XIAP 在JAK-STAT3 路徑中扮演著調節的⾓⾊,並影響下游基因TGF-β 的表現。此外,實驗結果顯⽰XIAP 對STAT3 有著負調節功能,表⽰XIAP 在JAK-STAT3 路徑中可能扮演著關鍵的⾓⾊,並進⼀步調節T細胞功能。
X-linked inhibitor of apoptosis protein (XIAP) is a member of the inhibitor of apoptosis protein family that directly inhibits caspases, and transmits caspase-independent signals. XIAP participates in a range of cellular signaling independent of caspase inhibition in myeloid cells via its function in E3 ubiquitin ligase. Previous study of our laboratory showed that XIAP is involved in T cell receptor (TCR) plus IL-6 cytokine activation. However, the involvement detail of XIAP in TCR activation and IL-6 presence remains unclear. In this thesis, we assessed the roles of XIAP in signaling pathways in TCR activation or IL-6 stimulation by XIAP knockdown DO11.10 cells. The results revealed that XIAP participates in STAT3 phosphorylation induced both by TCR- and TCR plus IL-6. We also found that MAPK is affected by XIAP neither in the presence of TCR nor IL-6. Besides, XIAP affects mTOR activation in the presence of IL-6, instead of TCR activation only. It is also found that down regulated XIAP increases TGF-β expression at the RNA level. These findings revealed that XIAP plays role in regulation of JAK-STAT3 pathway, and then affects the expression of downstream gene, TGF-β. Furthermore, the data indicates that XIAP negatively regulates STAT3, suggesting that XIAP may play an essential role in the JAK-STAT3 pathway, and further regulates T cell function.
Gorentla, B.K., and Zhong, X.-P. (2012). T cell Receptor Signal Transduction in T lymphocytes.
Marshall, J.S., Warrington, R., Watson, W., and Kim, H.L. (2018). An introduction to
immunology and immunopathology. Allergy, Asthma & Clinical Immunology 14, 49.
Quang, C.T., Zaniboni, B., and Ghysdael, J. (2017). A TCR-switchable cell death pathway in TALL.
Oncoscience 4, 17-18.
Pearce, E.L. (2010). Metabolism in T cell activation and differentiation. Current Opinion in
Immunology 22, 314-320.
Hwang, J.-R., Byeon, Y., Kim, D., and Park, S.-G. (2020). Recent insights of T cell receptormediated
signaling pathways for T cell activation and development. Experimental &
Molecular Medicine 52, 750-761.
Hedrick, S.M., Cohen, D.I., Nielsen, E.A., and Davis, M.M. (1984). Isolation of cDNA clones
encoding T cell-specific membrane-associated proteins. Nature 308, 149-153.
Malissen, M., Minard, K., Mjolsness, S., Kronenberg, M., Goverman, J., Hunkapiller, T.,
Prystowsky, M.B., Yoshikai, Y., Fitch, F., Mak, T.W., et al. (1984). Mouse T cell antigen
receptor: Structure and organization of constant and joining gene segments encoding the β
polypeptide. Cell 37, 1101-1110.
Saito, T., and Germain, R.N. (1987). Predictable acquisition of a new MHC recognition
specificity following expression of a transfected T-cell receptor β-chain gene. Nature 329,
256-259.
DembiĆ, Z., Haas, W., Weiss, S., McCubrey, J., Kiefer, H., von Boehmer, H., and Steinmetz, M.
(1986). Transfer of specificity by murine α and β T-cell receptor genes. Nature 320, 232-
238.
Letourneur, F., and Klausner, R.D. (1992). A novel di-leucine motif and a tyrosine-based motif
independently mediate lysosomal targeting and endocytosis of CD3 chains. Cell 69, 1143-
1157.
Xia, F., Qian, C.-R., Xun, Z., Hamon, Y., Sartre, A.-M., Formisano, A., Mailfert, S., Phelipot,
M.-C., Billaudeau, C., Jaeger, S., et al. (2018). TCR and CD28 Concomitant Stimulation
24
Elicits a Distinctive Calcium Response in Naive T Cells. Frontiers in Immunology 9.
Chan, A.C., Iwashima, M., Turck, C.W., and Weiss, A. (1992). ZAP-70: A 70 kd protein-tyrosine
kinase that associates with the TCR ζ chain. Cell 71, 649-662.
Irving, B.A., Chan, A.C., and Weiss, A. (1993). Functional characterization of a signal
transducing motif present in the T cell antigen receptor zeta chain. Journal of Experimental
Medicine 177, 1093-1103.
Wang, H., Kadlecek, T.A., Au-Yeung, B.B., Goodfellow, H.E.S., Hsu, L.-Y., Freedman, T.S., and
Weiss, A. (2010). ZAP-70: An Essential Kinase in T-cell Signaling. Cold Spring Harbor
Perspectives in Biology 2.
Beach, D., Gonen, R., Bogin, Y., Reischl, I.G., and Yablonski, D. (2007). Dual Role of SLP-76
in Mediating T Cell Receptor-induced Activation of Phospholipase C-γ1*. Journal of
Biological Chemistry 282, 2937-2946.
Zhong, X.-P., Guo, R., Zhou, H., Liu, C., and Wan, C.-K. (2008). Diacylglycerol kinases in
immune cell function and self-tolerance. Immunological Reviews 224, 249-264.
Oh-hora, M., and Rao, A. (2008). Calcium signaling in lymphocytes. Current Opinion in
Immunology 20, 250-258.
Macian, F. (2005). NFAT proteins: key regulators of T-cell development and function. Nature
Reviews Immunology 5, 472-484.
Bertin, S., Lozano-Ruiz, B., Bachiller, V., García-Martínez, I., Herdman, S., Zapater, P., Francés,
R., Such, J., Lee, J., Raz, E., et al. (2015). Dual-specificity phosphatase 6 regulates CD4+
T-cell functions and restrains spontaneous colitis in IL-10-deficient mice. Mucosal
Immunology 8, 505-515.
Damasio, M.P., Marchingo, J.M., Spinelli, L., Hukelmann, J.L., Cantrell, D.A., and Howden,
A.J.M. (2021). Extracellular signal-regulated kinase (ERK) pathway control of CD8+ T
cell differentiation. Biochemical Journal 478, 79-98.
Rincón, M., Flavell, R.A., and Davis, R.J. (2001). Signal transduction by MAP kinases in T
lymphocytes. Oncogene 20, 2490-2497.
Rincón, M., and Davis, R.J. (2009). Regulation of the immune response by stress-activated
25
protein kinases. Immunological Reviews 228, 212-224.
Dodeller, F., Skapenko, A., Kalden, J.R., Lipsky, P.E., and Schulze-Koops, H. (2005). The p38
mitogen-activated protein kinase regulates effector functions of primary human CD4 T cells.
European Journal of Immunology 35, 3631-3642.
Kamimura, D., Ishihara, K., and Hirano, T. (2004). IL-6 signal transduction and its physiological
roles: the signal orchestration model. In Reviews of Physiology, Biochemistry and
Pharmacology (Berlin, Heidelberg: Springer Berlin Heidelberg), pp. 1-38.
Dienz, O., and Rincon, M. (2009). The effects of IL-6 on CD4 T cell responses. Clinical
Immunology 130, 27-33.
Korn, T., and Hiltensperger, M. (2021). Role of IL-6 in the commitment of T cell subsets.
Cytokine 146, 155654.
Heinrich PC, B.I., Müller-Newen G, Schaper F, Graeve L (1998). Interleukin-6-type cytokine
signalling through the gp130/Jak/STAT pathway. Biochemical Journal 334, 297-314.
Toumpanakis, D., and Vassilakopoulos, T. (2007). Molecular mechanisms of action of
Interleukin-6 (IL-6). Pneumon 20, 154-167.
Heijink, I.H., Vellenga, E., Borger, P., Postma, D.S., De Monchy, J.G.R., and Kauffman, H.F.
(2002). Interleukin-6 promotes the production of interleukin-4 and interleukin-5 by
interleukin-2-dependent and -independent mechanisms in freshly isolated human T cells.
Immunology 107, 316-324.
Egwuagu, C.E. (2009). STAT3 in CD4+ T helper cell differentiation and inflammatory diseases.
Cytokine 47, 149-156.
Shuai, K., and Liu, B. (2003). Regulation of JAK–STAT signalling in the immune system. Nature
Reviews Immunology 3, 900-911.
Hunter, C.A. (2005). New IL-12-family members: IL-23 and IL-27, cytokines with divergent
functions. Nature Reviews Immunology 5, 521-531.
Schindler, C., Levy, D.E., and Decker, T. (2007). JAK-STAT Signaling: From Interferons to
Cytokines *. Journal of Biological Chemistry 282, 20059-20063.
Darnell, J.E. (1997). STATs and Gene Regulation. Science 277, 1630-1635.
26
Levy, D.E., and Darnell, J.E. (2002). STATs: transcriptional control and biological impact.
Nature Reviews Molecular Cell Biology 3, 651-662.
Takeda, K., Kaisho, T., Yoshida, N., Takeda, J., Kishimoto, T., and Akira, S. (1998). Stat3
Activation Is Responsible for IL-6-Dependent T Cell Proliferation Through Preventing
Apoptosis: Generation and Characterization of T Cell-Specific Stat3-Deficient Mice1. The
Journal of Immunology 161, 4652-4660.
Rébé, C., Végran, F., Berger, H., and Ghiringhelli, F. (2013). STAT3 activation. JAK-STAT 2,
e23010.
Basu, A., Hoerning, A., Datta, D., Edelbauer, M., Stack, M.P., Calzadilla, K., Pal, S., and Briscoe,
D.M. (2009). Cutting Edge: Vascular Endothelial Growth Factor-Mediated Signaling in
Human CD45RO+ CD4+ T Cells Promotes Akt and ERK Activation and Costimulates IFN-
γ Production. The Journal of Immunology 184, 545-549.
Ivanov, I.I., McKenzie, B.S., Zhou, L., Tadokoro, C.E., Lepelley, A., Lafaille, J.J., Cua, D.J., and
Littman, D.R. (2006). The Orphan Nuclear Receptor RORγt Directs the Differentiation
Program of Proinflammatory IL-17+ T Helper Cells. Cell 126, 1121-1133.
Li, C., Iness, A., Yoon, J., Grider, J.R., Murthy, K.S., Kellum, J.M., and Kuemmerle, J.F. (2015).
Noncanonical STAT3 Activation Regulates Excess TGF-β1 and Collagen I Expression in
Muscle of Stricturing Crohn’s Disease. The Journal of Immunology 194, 3422-3431.
Prud'homme, G.J. (2007). Pathobiology of transforming growth factor β in cancer, fibrosis and
immunologic disease, and therapeutic considerations. Laboratory Investigation 87, 1077-
1091.
Heldin, C.-H., and Moustakas, A. (2016). Signaling Receptors for TGF-β Family Members. Cold
Spring Harbor Perspectives in Biology 8.
Sorrentino, A., Thakur, N., Grimsby, S., Marcusson, A., von Bulow, V., Schuster, N., Zhang, S.,
Heldin, C.-H., and Landström, M. (2008). The type I TGF-β receptor engages TRAF6 to
activate TAK1 in a receptor kinase-independent manner. Nature Cell Biology 10, 1199-
1207.
Lee, M.K., Pardoux, C., Hall, M.C., Lee, P.S., Warburton, D., Qing, J., Smith, S.M., and Derynck,
R. (2007). TGF-β activates Erk MAP kinase signalling through direct phosphorylation of
27
ShcA. The EMBO Journal 26, 3957-3967.
Batlle, E., and Massagué, J. (2019). Transforming Growth Factor-β Signaling in Immunity and
Cancer. Immunity 50, 924-940.
Li, M.O., and Flavell, R.A. (2008). TGF-beta: A Master of All T Cell Trades. Cell 134, 392-404.
Davis, R.J. (2000). Signal Transduction by the JNK Group of MAP Kinases. Cell 103, 239-252.
Schaeffer, H.J., and Weber, M.J. (1999). Mitogen-Activated Protein Kinases: Specific Messages
from Ubiquitous Messengers. Molecular and Cellular Biology 19, 2435-2444.
Han, J., and Ulevitch, R.J. (1999). Emerging targets for anti-inflammatory therapy. Nature Cell
Biology 1, E39-E40.
Zhang, W., and Liu, H.T. (2002). MAPK signal pathways in the regulation of cell proliferation
in mammalian cells. Cell Research 12, 9-18.
Winston, L.A., and Hunter, T. (1996). Intracellular signalling: Putting JAKs on the kinase MAP.
Current Biology 6, 668-671.
Janknecht, R., Ernst, W.H., Pingoud, V., and Nordheim, A. (1993). Activation of ternary complex
factor Elk-1 by MAP kinases. The EMBO Journal 12, 5097-5104.
Chung, J., Uchida, E., Grammer, T.C., and Blenis, J. (1997). STAT3 Serine Phosphorylation by
ERK-Dependent and -Independent Pathways Negatively Modulates Its Tyrosine
Phosphorylation. Molecular and Cellular Biology 17, 6508-6516.
Rohrs, J.A., Siegler, E.L., Wang, P., and Finley, S.D. (2020). ERK Activation in CAR T Cells Is
Amplified by CD28-Mediated Increase in CD3ζ Phosphorylation. iScience 23, 101023.
Salvador, J.M., Mittelstadt, P.R., Guszczynski, T., Copeland, T.D., Yamaguchi, H., Appella, E.,
Fornace, A.J., and Ashwell, J.D. (2005). Alternative p38 activation pathway mediated by T
cell receptor–proximal tyrosine kinases. Nature Immunology 6, 390-395.
Canovas, B., and Nebreda, A.R. (2021). Diversity and versatility of p38 kinase signalling in
health and disease. Nature Reviews Molecular Cell Biology 22, 346-366.
Gorentla, B.K., Wan, C.-K., and Zhong, X.-P. (2011). Negative regulation of mTOR activation
28
by diacylglycerol kinases. Blood 117, 4022-4031.
Sinclair, L.V., Finlay, D., Feijoo, C., Cornish, G.H., Gray, A., Ager, A., Okkenhaug, K.,
Hagenbeek, T.J., Spits, H., and Cantrell, D.A. (2008). Phosphatidylinositol-3-OH kinase
and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nature
Immunology 9, 513-521.
Turner, M.S., Kane, L.P., and Morel, P.A. (2009). Dominant Role of Antigen Dose in
CD4+Foxp3+ Regulatory T Cell Induction and Expansion1. The Journal of Immunology
183, 4895-4903.
Katzman, S.D., O'Gorman, W.E., Villarino, A.V., Gallo, E., Friedman, R.S., Krummel, M.F.,
Nolan, G.P., and Abbas, A.K. (2010). Duration of antigen receptor signaling determines Tcell
tolerance or activation. Proceedings of the National Academy of Sciences 107, 18085-
18090.
Laplante, M., and Sabatini, D.M. (2012). mTOR Signaling. Cold Spring Harbor Perspectives in
Biology 4.
Ren, W., Yin, J., Duan, J., Liu, G., Tan, B., Yang, G., Wu, G., Bazer, F.W., Peng, Y., and Yin, Y.
(2016). mTORC1 signaling and IL-17 expression: Defining pathways and possible
therapeutic targets. European Journal of Immunology 46, 291-299.
Delgoffe, G.M., Pollizzi, K.N., Waickman, A.T., Heikamp, E., Meyers, D.J., Horton, M.R., Xiao,
B., Worley, P.F., and Powell, J.D. (2011). The kinase mTOR regulates the differentiation of
helper T cells through the selective activation of signaling by mTORC1 and mTORC2.
Nature Immunology 12, 295-303.
Duckett, C.S., Nava, V.E., Gedrich, R.W., Clem, R.J., Van Dongen, J.L., Gilfillan, M.C., Shiels,
H., Hardwick, J.M., and Thompson, C.B. (1996). A conserved family of cellular genes
related to the baculovirus iap gene and encoding apoptosis inhibitors. The EMBO Journal
15, 2685-2694.
Deveraux, Q.L., Roy, N., Stennicke, H.R., Van Arsdale, T., Zhou, Q., Srinivasula, S.M., Alnemri,
E.S., Salvesen, G.S., and Reed, J.C. (1998). IAPs block apoptotic events induced by
caspase-8 and cytochrome c by direct inhibition of distinct caspases. The EMBO Journal
17, 2215-2223.
Deveraux, Q.L., Leo, E., Stennicke, H.R., Welsh, K., Salvesen, G.S., and Reed, J.C. (1999).
29
Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct
specificities for caspases. The EMBO Journal 18, 5242-5251.
Schimmer, A.D., Dalili, S., Batey, R.A., and Riedl, S.J. (2006). Targeting XIAP for the treatment
of malignancy. Cell Death & Differentiation 13, 179-188.
Lu, M., Lin, S.-C., Huang, Y., Kang, Y.J., Rich, R., Lo, Y.-C., Myszka, D., Han, J., and Wu, H.
(2007). XIAP Induces NF-κB Activation via the BIR1/TAB1 Interaction and BIR1
Dimerization. Molecular Cell 26, 689-702.
Sun, C., Cai, M., Gunasekera, A.H., Meadows, R.P., Wang, H., Chen, J., Zhang, H., Wu, W., Xu,
N., Ng, S.-C., et al. (1999). NMR structure and mutagenesis of the inhibitor-of-apoptosis
protein XIAP. Nature 401, 818-822.
Takahashi, R., Deveraux, Q., Tamm, I., Welsh, K., Assa-Munt, N., Salvesen, G.S., and Reed, J.C.
(1998). A Single BIR Domain of XIAP Sufficient for Inhibiting Caspases*. Journal of
Biological Chemistry 273, 7787-7790.
Goncharov, T., Hedayati, S., Mulvihill, M.M., Izrael-Tomasevic, A., Zobel, K., Jeet, S.,
Fedorova, A.V., Eidenschenk, C., deVoss, J., Yu, K., et al. (2018). Disruption of XIAP-RIP2
Association Blocks NOD2-Mediated Inflammatory Signaling. Molecular Cell 69, 551-
565.e557.
Damgaard, Rune B., Nachbur, U., Yabal, M., Wong, Wendy W.-L., Fiil, Berthe K., Kastirr, M.,
Rieser, E., Rickard, James A., Bankovacki, A., Peschel, C., et al. (2012). The Ubiquitin
Ligase XIAP Recruits LUBAC for NOD2 Signaling in Inflammation and Innate Immunity.
Molecular Cell 46, 746-758.
Stafford, C.A., Lawlor, K.E., Heim, V.J., Bankovacki, A., Bernardini, J.P., Silke, J., and Nachbur,
U. (2018). IAPs Regulate Distinct Innate Immune Pathways to Co-ordinate the Response
to Bacterial Peptidoglycans. Cell Reports 22, 1496-1508.
Sun, C., Cai, M., Meadows, R.P., Xu, N., Gunasekera, A.H., Herrmann, J., Wu, J.C., and Fesik,
S.W. (2000). NMR Structure and Mutagenesis of the Third Bir Domain of the Inhibitor of
Apoptosis Protein XIAP*. Journal of Biological Chemistry 275, 33777-33781.
Wu, G., Chai, J., Suber, T.L., Wu, J.-W., Du, C., Wang, X., and Shi, Y. (2000). Structural basis
of IAP recognition by Smac/DIABLO. Nature 408, 1008-1012.
30
Gyrd-Hansen, M., Darding, M., Miasari, M., Santoro, M.M., Zender, L., Xue, W., Tenev, T., da
Fonseca, P.C.A., Zvelebil, M., Bujnicki, J.M., et al. (2008). IAPs contain an evolutionarily
conserved ubiquitin-binding domain that regulates NF-κB as well as cell survival and
oncogenesis. Nature Cell Biology 10, 1309-1317.
Galbán, S., and Duckett, C.S. (2010). XIAP as a ubiquitin ligase in cellular signaling. Cell Death
& Differentiation 17, 54-60.
Chinn, I.K. (2020). XIAP Deficiency. Encyclopedia of Medical Immunology:
Immunodeficiency Diseases, 715-718.
Latour, S., and Aguilar, C. (2015). XIAP deficiency syndrome in humans. Seminars in Cell &
Developmental Biology 39, 115-123.
Harlin, H., Reffey, S.B., Duckett, C.S., Lindsten, T., and Thompson, C.B. (2001).
Characterization of XIAP-Deficient Mice. Molecular and Cellular Biology 21, 3604-3608.
Prakash, H., Albrecht, M., Becker, D., Kuhlmann, T., and Rudel, T. (2010a). Deficiency of XIAP
Leads to Sensitization for Chlamydophila pneumoniae Pulmonary Infection and
Dysregulation of Innate Immune Response in Mice. Journal of Biological Chemistry 285,
20291-20302.
Hsieh, W.-C., Chuang, Y.-T., Chiang, I.-H., Hsu, S.-C., Miaw, S.-C., and Lai, M.-Z. (2014).
Inability to resolve specific infection generates innate immunodeficiency syndrome in
Xiap−/− mice. Blood 124, 2847-2857.
Pedersen, J., LaCasse, E.C., Seidelin, J.B., Coskun, M., and Nielsen, O.H. (2014). Inhibitors of
apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD)
inflammation. Trends in Molecular Medicine 20, 652-665.
Andree, M., Seeger, J.M., Schüll, S., Coutelle, O., Wagner-Stippich, D., Wiegmann, K.,
Wunderlich, C.M., Brinkmann, K., Broxtermann, P., Witt, A., et al. (2014). BID-dependent
release of mitochondrial SMAC dampens XIAP-mediated immunity against Shigella. The
EMBO Journal 33, 2171-2187.
Bauler, L.D., Duckett, C.S., and O'Riordan, M.X.D. (2008). XIAP Regulates Cytosol-Specific
Innate Immunity to Listeria Infection. PLOS Pathogens 4, e1000142.
Prakash, H., Albrecht, M., Becker, D., Kuhlmann, T., and Rudel, T. (2010b). Deficiency of XIAP
31
Leads to Sensitization for Chlamydophila pneumoniae Pulmonary Infection and
Dysregulation of Innate Immune Response in Mice*. Journal of Biological Chemistry 285,
20291-20302.
Krieg, A., Correa, R.G., Garrison, J.B., Le Negrate, G., Welsh, K., Huang, Z., Knoefel, W.T.,
and Reed, J.C. (2009). XIAP mediates NOD signaling via interaction with RIP2.
Proceedings of the National Academy of Sciences 106, 14524-14529.
Fritz, J.H., Ferrero, R.L., Philpott, D.J., and Girardin, S.E. (2006). Nod-like proteins in immunity,
inflammation and disease. Nature Immunology 7, 1250-1257.
Elinav, E., Strowig, T., Henao-Mejia, J., and Flavell, Richard A. (2011). Regulation of the
Antimicrobial Response by NLR Proteins. Immunity 34, 665-679.
Lawlor, K.E., Feltham, R., Yabal, M., Conos, S.A., Chen, K.W., Ziehe, S., Graß, C., Zhan, Y.,
Nguyen, T.A., Hall, C., et al. (2017). XIAP Loss Triggers RIPK3- and Caspase-8-Driven
IL-1β Activation and Cell Death as a Consequence of TLR-MyD88-Induced cIAP1-
TRAF2 Degradation. Cell Reports 20, 668-682.
Hughes, S.A., Lin, M., Weir, A., Huang, B., Xiong, L., Chua, N.K., Pang, J., Santavanond, J.P.,
Tixeira, R., Doerflinger, M., et al. (2023). Caspase-8-driven apoptotic and pyroptotic
crosstalk causes cell death and IL-1β release in X-linked inhibitor of apoptosis (XIAP)
deficiency. The EMBO Journal 42, e110468.
Thakker, P., Ariana, A., Hajjar, S., Cai, D., Rijal, D., and Sad, S. (2023). XIAP promotes the
expansion and limits the contraction of CD8 T cell response through cell extrinsic and
intrinsic mechanisms respectively. PLOS Pathogens 19, e1011455.
Hsieh, W.-C., Hsu, T.-S., Chang, Y.-J., and Lai, M.-Z. (2018). IL-6 receptor blockade corrects
defects of XIAP-deficient regulatory T cells. Nature Communications 9, 463.
Weyand, C.M., Younge, B.R., and Goronzy, J.J. (2011). IFN-γ and IL-17: the two faces of T-cell
pathology in giant cell arteritis. Current Opinion in Rheumatology 23, 43-49.
Goodman, W.A., Young, A.B., McCormick, T.S., Cooper, K.D., and Levine, A.D. (2011). Stat3
Phosphorylation Mediates Resistance of Primary Human T Cells to Regulatory T Cell
Suppression. The Journal of Immunology 186, 3336-3345.
Shah, K., Al-Haidari, A., Sun, J., and Kazi, J.U. (2021). T cell receptor (TCR) signaling in health
32
and disease. Signal Transduction and Targeted Therapy 6, 412.
Chi, H. (2012). Regulation and function of mTOR signalling in T cell fate decisions. Nature
Reviews Immunology 12, 325-338.
Kim, H.Y., Jhun, J.Y., Cho, M.-L., Choi, J.Y., Byun, J.K., Kim, E.-K., Yoon, S.K., Bae, S.H.,
Chung, B.H., and Yang, C.W. (2014). Interleukin-6 upregulates Th17 response via
mTOR/STAT3 pathway in acute-on-chronic hepatitis B liver failure. Journal of
Gastroenterology 49, 1264-1273.
Durant, L., Watford, W.T., Ramos, H.L., Laurence, A., Vahedi, G., Wei, L., Takahashi, H., Sun,
H.-W., Kanno, Y., Powrie, F., et al. (2010). Diverse Targets of the Transcription Factor
STAT3 Contribute to T Cell Pathogenicity and Homeostasis. Immunity 32, 605-615.
Rigaud, S., Fondanèche, M.-C., Lambert, N., Pasquier, B., Mateo, V., Soulas, P., Galicier, L., Le
Deist, F., Rieux-Laucat, F., Revy, P., et al. (2006). XIAP deficiency in humans causes an
X-linked lymphoproliferative syndrome. Nature 444, 110-114.
Lee, C., and Cheung, S.T. (2019). STAT3: An Emerging Therapeutic Target for Hepatocellular
Carcinoma. Cancers 11, 1646.
Kim, S.-R., Bae, M.-K., Kim, J.-Y., Wee, H.-J., Yoo, M.-A., and Bae, S.-K. (2009). Aspirin
induces apoptosis through the blockade of IL-6-STAT3 signaling pathway in human
glioblastoma A172 cells. Biochemical and Biophysical Research Communications 387,
342-347.
Ishdorj, G., Johnston, J.B., and Gibson, S.B. (2010). Inhibition of Constitutive Activation of
STAT3 by Curcurbitacin-I (JSI-124) Sensitized Human B-Leukemia Cells to Apoptosis.
Molecular Cancer Therapeutics 9, 3302-3314.
Akhtar, S., Achkar, I.W., Siveen, K.S., Kuttikrishnan, S., Prabhu, K.S., Khan, A.Q., Ahmed, E.I.,
Sahir, F., Jerobin, J., Raza, A., et al. (2019). Sanguinarine Induces Apoptosis Pathway in
Multiple Myeloma Cell Lines via Inhibition of the JaK2/STAT3 Signaling. Frontiers in
Oncology 9.
Kojima, H., Inoue, T., Kunimoto, H., and Nakajima, K. (2013). IL-6-STAT3 signaling and
premature senescence. JAK-STAT 2, e25763.
Richards, S.A., Dreisbach, V.C., Murphy, L.O., and Blenis, J. (2001). Characterization of
33
Regulatory Events Associated with Membrane Targeting of p90 Ribosomal S6 Kinase 1.
Molecular and Cellular Biology 21, 7470-7480.
Noubade, R., Krementsov, D.N., del Rio, R., Thornton, T., Nagaleekar, V., Saligrama, N.,
Spitzack, A., Spach, K., Sabio, G., Davis, R.J., et al. (2011). Activation of p38 MAPK in
CD4 T cells controls IL-17 production and autoimmune encephalomyelitis. Blood 118,
3290-3300.