簡易檢索 / 詳目顯示

研究生: 何宗融
論文名稱: 單晶碳化矽在高溫矽離子輻照下之微結構變化
Microstructure Evolution of Single Crystal SiC under Si Ion Irradiation at Elevated Temperatures
指導教授: 開執中
陳福榮
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 79
中文關鍵詞: 輻射損傷碳化矽高溫
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳化矽材料是目前核能材料中最具潛力之一,其性質優異,如:低活性、高溫機械性質佳、輻射穩定性佳、抗腐蝕…等,而本論文的主要目的則是模擬核融合反應器,以及高溫氣冷式核分裂反應器之高溫輻射環境對碳化矽材料的輻射效應。
    我們利用本校儀器組之加速器以5.4MeV之Si3+離子,進行6組不同溫度之照射實驗,其佈值條件分別為:500℃、600℃、800℃、1000℃、1200℃與1300℃ 10dpa。在所有實驗中只有溫度在600℃以上時,才有差排環的形成。差排環隨著溫度的升高,尺寸大致上也隨之增大,而密度則逐漸減少。分別比較高劑量與低劑量,高劑量之差排環尺寸皆較大而密度較小。此外,溫度高低對低劑量差排環的效應較小,溫度區間間隔需較大才可看出有明顯變化。由於單晶碳化矽不含加工製造缺陷,無法提供空孔有利之成核點,因此在所有條件下皆未發現空孔的存在。差排環的型態,目前推論是由格隙原子團聚,而造成之Frank型多一排原子之差排環。高分辨之電子顯微影像顯示某些區域極有可能符合以上推論,但在未超出影像範圍區域無法顯示完整差排環的兩端,因此此部分仍須努力。未來研究將進行更高溫以及更高劑量之照射實驗,以了解差排環是否會在6H碳化矽結構下演化為差排網或其他缺陷型態,並深入探討其機制。


    摘要 I 章節目錄 II 圖目錄 IV 表目錄 VII 第一章 研究動機 1 第二章 文獻回顧 4 2-1 輻射損傷 4 2-2 核能發電原理 6 2-3 核融合 6 2-3.1 核融合環境 6 2-3.2 核融合結構材料 8 2-4 核分裂 9 2-4.1 核分裂環境(高溫氣冷式反應器) 9 2-4.2 燃料球結構 11 2-5 材料製備 13 2-6 晶體結構 14 2-7 碳化矽的輻射效應 14 第三章 實驗原理與方法 26 3-1 SRIM程式模擬計算 27 3-2 離子佈植照射系統 27 3-2.1 加速器 27 3-2.2入射粒子與靶材之交互作用 28 3-2.3 三射束離子照射系統 29 3-3 實驗分析 29 3-3.1 電子顯微鏡原理 29 3-3.2 電子束與物質交互作用 30 3-3.3 電子顯微鏡系統 31 3-3.4 電子槍 32 3-3.5 X-光能量分散光譜儀(EDS) 33 3-3.6 電子能量損失能譜儀 34 3-4 TEM試片製備 37 第四章 實驗結果與討論 46 4-1 碳化矽單晶未照射微結構分析 46 4-2 矽離子照射之輻射效應分析 47 4-2.1 500℃、10 dpa照射實驗 47 4-2.2 600℃、10 dpa照射實驗 48 4-2.3 800℃、10 dpa照射實驗 50 4-2.4 1000℃、10 dpa照射實驗 51 4-2.5 1200℃、10 dpa照射實驗 51 4-2.6 1300℃、10 dpa照射實驗 52 4-3 綜合比較 53 第五章 結論 73 第六章 未來研究方向 75 參考文獻 76

    參考文獻
    [1] 楊文斗,“反應堆材料學”, 原子能出版社,p.144, 2000.
    [2] 牛頓雜誌, 七月號/1998, 182期, p90~95.
    [3] 曾煥華,“向核融合挑戰”,1986, 銀禾文化出版商
    [4] Weston M. Stacey, Jr.,Fusion:An Introduction to the Physics and Technology of Magnetic Confinement Fusion, 1984,A Wiley-Interscience publication.
    [5] Arthur Beiser, Concepts of Modern Physics, 5th edition, 1995, McGraw-Hill, Inc.
    [6] Wesson J., 1997, Tokamaks, Clarendon Press Oxford.
    [7] R. H. Jones, D. Steiner, H. L. Heinisch, G. A. Newsome, H. M Kerch, J. Nucl. Mater. 245 (1997) 87-107.
    [8] M. Saito, A. Hasegawa, S.Ohtsuks, K. Abe, J. Nucl. Mater. 258-263 (1998) 1562.
    [9] E.V. Dyomina , P. Fenici , V.P. Kolotov , M. Zucchetti, Journal of Nuclear Materials 258-263 (1998) 1784-1790.
    [10] L.L. Snead, R.H. Jones, A. Kohyama, P. Fenici, J. Nucl. Mater. 233-237 (1996) 26-36.
    [11] P. Fenici, A.J. Frias Rebelo, R.H. Jones, A. Kohyama, L.L. Snead, J. Nucl. Mater. 258-263 (1998) 215.
    [12] R.H. Jones, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, B. Riccardi, L.L. Snead, W.J. Weber, J. Nucl. Mater. 307-311(2002) 1057-1072
    [13] B. Riccardi, L. Giancarli, A. Hasegawa, Y. Katoh, A. Kohyama, R.H. Jones, L.L. Snead, J. Nucl. Mater. 329-333(2004) 56-65
    [14] L.H. Rovner and G.R. Hopkins, Nucl. Technol. 29 (1976) 274.
    [15] Satoru Tanaka, Introduction to Fusion Reactor Engineering, 2001.
    [16] Y. Katoh, A. Kohyama, K. Morishita, A. Kimura, Introduction to Fusion Reactor Engineering, 2001.
    [17] G.R. Hopkins, R.J. Price, Nucl. Eng. Des.Fusion, Vol.2 Issue 1(1985) p.111~143
    [18] R.H. Jones, Environmental Effects on SiC/SiC Composites For Fusion Structural Applications, Fusion Reactor Materials Semi-Annual Progress Report for period ending 31, 1991, DOE/ER-0313/10, p.215.
    [19] T. Sample, P.Fenici, H. Kolbe, L. Orecchia, J. Nucl. Mater 212-215(1994) 1529
    [20] Krishan K. Chawla, Composite Materials, 2nd edition, 1998, Springer
    [21] http://www.ne.doe.gov/genIV/documents/gen_iv_roadmap.pdf
    [22] Shouyin HU, Xihua LIANG, Liqiang WEI, COMMISSIONING AND OPERATION EXPERIENCE AND SAFETY EXPERIMENTS ON HTR-10, Institute of Nuclear Energy Technology, Tsinghua University,2006. 10
    [23] IAEA-TECDOC-1198
    [24] Lance L. Snead, Takashi Nozawa, Yutai Katoh , Thak-Sang Byun ,Sosuke Kondo ,David A. Petti ,J. Nucl. Mater. 371(2007) 329-377
    [25] E.G. Acheson, Chem. News 68 (1893) 179.
    [26] J.S. Goela, L.E. Burns, R.L. Taylor, Appl. Phys. Lett. 64 (1994) 131.
    [27] S.J. Xu, J.G. Zhou, B. Yang, B.Z. Zhang, J. Nucl. Mater. 224 (1995) 12.
    [28] R.W. Olesinki, G.J. Abbaschian, Bull. Alloy Phase Diagrams 5 (1984) 486.
    [29] N.W. Jepps, T.F. Page, J. Cryst. Growth Charact. 7 (1983) 259.
    [30] P. Pirouz, J.W. Yang, Ultramicroscopy 51 (1993) 189.
    [31] P.T.B. Shaffer, Acta Cryst. B 25 (1968) 477.
    [32] M. Iwami, Nucl. Instrum. and Meth. A 466 (2001) 406.
    [33] JCPDS 29-1126 _ 29, 39-1196, 22-1319.
    [34] J.F. Ziegler, J.P. Biersack, and U. Littmark, Stopping and Range of Ions in Solids, Vol. 1 (Pergamon Press, New York,1985)
    [35] 物理會刊十二卷一期1990年
    [36] Donald R. Olander, “Fundamental aspects of nuclear reactor fuel elements”, 1976
    [37] 科儀叢書3, 材料電子顯微鏡學, 國科會精儀中心.
    [38] 汪建民, 杜正恭, 材料分析 中國材料科學學會 1998.
    [39] R. F. Egerton, “Electron-energy loss spectroscopy in the electron microscopy “, Plenum Press, New York, (1996)
    [40] H. Shuman, C. F. Chang and A. P. Somlyo, Ultramicorsc., 19,121 (1986).
    [41] F. Hofer and P. Warbichler, Ultramucrosc., 63:21 (1996)
    [42] N. Bonnet, C. Coliex, C. Mory and M. Tence, Scanning Microscopy 2(Suppl.) 351 (1988) N. Bonnet, C. Coliex, C. Mory and M. Tence, Scanning Microscopy 2(Suppl.) 351 (1988)
    [43] A. Berger, J. Mayer and H. Kohl, Ultramicrosc., 55:101 (1994)
    [44] A. Berger, J. Mayer and H. Kohl, Ultramicrosc., 55:101 (1994) P. A. Crozier and R. F. Egerton, Ultramicrosc., 27:9 (1988)
    [45] D. B. Williams and C. B. Carter, “Transmission Electron Microscopy”, Plenum Press. New York & London, (1996)
    [46] T. Malis, S. Cheng and R. F. Egerton, J. Electron. Microsc. Tech. 8:8471 (1988)
    [47] Y. Katoh, N. Hashimoto, S. Kondo, L.L. Snead, A. Kohyama, J. Nucl. Mater. 351 (2006) 228.
    [48] K. R□schenschmidt, H. Bracht, N. A. Stolwijk, M. Laube, G. Pensl and G. R. Brandes, J. Appl. Phys. 96(2004)
    [49] P. O. □. Persson, M. S. Janson, A. Hall□n, R. Yakimova, D. Panknin, W. Skorupa, and L. Hultman, J. Appl. Phys. 92, 2501 (2002)
    [50] Y. Katoh, H. Kishimoto, A. Kohyama, J. Nucl. Mater. 307–311 (2002) 1221.
    [51] L.L. Snead, S.J. Zinkle, J.C. Hay, M.C. Osborne, Nucl. Instrum. and Meth. B 141 (1998) 123.
    [52] L.L. Snead, S.J. Zinkle, Nucl. Instrum. and Meth. B 191 (2002) 497.
    [53] Y. Katoh, L.L. Snead, C.H. Henager, Jr., A. Hasegawa, A. Kohyama, B. Riccardi, H. Hegeman, in: 12th International Conference on Fusion Reactor Materials, 2005, Santa Barbara, CA, USA, J. Nucl. Mater., in press.
    [54] Y. Katoh, S.I. Golubov, L.L. Snead, Ceram. Eng. Sci. Proc., accepted for publication.
    [55] T. Yano, H. Miyazaki, M. Akiyoshi, T. Iseki, J. Nucl. Mater. 253 (1998) 78.
    [56] R.J. Price, J. Nucl. Mater. 48 (1973) 47.
    [57] D.J. Senor, G.E. Youngblood, L.R. Greenwood, D.V. Archer, D.L. Alexander, M.C. Chen, G.A. Newsome, J. Nucl. Mater. 317 (2003) 145.
    [58] 萬發榮,“金屬材料的輻照損傷”, 科學出版社, 1993.
    [59] A. Seger, On the Theory of Radiation Damage and Radiation
    Hardening, in Proceedings of the Second United Nations
    International Conference on the Peaceful Uses of Atomic Energy,
    Geneva,1958, Vol.6, P250,United Nations, New York,1958.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE