簡易檢索 / 詳目顯示

研究生: 丁昱嘉
Ting, Yu-Chia
論文名稱: 微型產氫裝置之熱場分析
A Study of Heat Field in Micro Hydrogen Supplier
指導教授: 潘欽
Pan, Chin
口試委員: 潘欽
Pan, Chin
蘇育全
Su, Yu-Chuan
林清發
Lin, Tsing-Fa
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 84
中文關鍵詞: 產氫裝置紅外線測溫儀熱場甲醇重組器
外文關鍵詞: hydrogen supplier, infrared thermometer, heat field, reformer
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對重組式甲醇燃料電池 (RMFC) 之前端氫氣來源設計一微熱交換型產氫裝置 (micro heat exchange-type hydrogen supplier, MHEHS),並對此產氫裝置以原位測量概念進行熱場研究。利用微機電技術 (MEMS) 將微型熱交換器 (MCHE) 與微型觸媒重組器 (MCR) 進行整合成長寬各為2 cm、厚度僅2.13 mm之微型產氫裝置。
    將25℃常溫液態甲醇與氧氣混合進入產氫裝置,經過上層熱交換器與高溫產物發生熱交換和透過POM (Partial Oxidation of Methanol) 放熱反應產生之餘熱使其達到重組器工作溫度且利用高速攝影機進行流譜觀測確定液態甲醇進入重組器前完全乾化以防其毒化觸媒。當反應物達工作溫度進入下層甲醇重組器進行重組反應,本實驗利用紅外線測溫儀量測甲醇重組器觀測窗溫度分布和其變化情形進行熱場分析且其為非接觸式測量方法能最真實反應當時熱場情況。最後將利用氣相層析儀分析產物組成比例。
    本研究針對不同液態甲醇與氧氣流量比例和加熱功率進行深入甲醇重組器之熱場分析與現象討論。並以原位測量概念發展一產氫裝置熱場分析之檢測方式。當固定氧氣比例改動甲醇流量和加熱功率,發現在加熱功率為22.5 W時,甲醇流量為0.25 sccm因高流量擁有較高氫氣產率為2.97×10-5 mole/s和較高熱效益達70.2%;而甲醇流量為0.04 sccm時則因重組器反應溫度較均勻擁有較高氫氣選擇率達77.3%,其中一氧化碳產率和選擇率則不管變化加熱功率或甲醇流量都維持低產量將有利於未來與燃料電池進行整合之目標。


    Abstract
    This study integrates successfully that a micro heat exchange-type hydrogen supplier (MHEHS) as a fuel supply source for a micro reforming methanol fuel cell (RMFC). The MHEHS is with dimension of 2 cm (L) × 2 cm (W) × 0.2 cm (T) and is composed of a micro-channel heat exchanger (MCHE, 2nd layer) and a micro channel reformer (MCR, 4th layer) by a micro machinery techniques. The present study focuses on the thermal field, especially the temperature distribution in the MCR
    Liquid methanol (25℃) is mixed with oxygen and flowed through the front side of the MCHE. Evaporation of liquid methanol in the micro-channel is warrant through an external heat input and the generated from a partial oxidation of methanol (POM) in the MCR. The dynamic temperature distribution in the MCR during methanol reforming reacting is observed using a non-contact infrared thermometer (IR). The hot spots and the evolution of hot region can thus be cleanly visualized. The product composition after the POM is collected and analyzed by a gas chromatography (GC).
    The effect of methanol flow rate, oxygen flow rate and heating power on the dynamic temperature distribution of the MCR and on the performance of the MHEHS are investigated. The results shows that when the VO2= 10 sccm,VMeOH= 0.25 sccm, and qpower= 22.5 W, the hydrogen production rate is the highest of 2.97×10-5 mole/s and thermal efficiency is 70.2 %. On the other hand, when the VO2 and qpowerkeep the same, while VMeOH is reduced to the stoichiometric value of 0.04 sccm, the hydrogen selectivity is the highest of 77.3 %. The yield rate and selectivity of carbon monoxide remains very low or zero in any Oxygen flowrate over 8 sccm.

    摘要 i Abstract ii 致謝 iv 目錄 v 表目錄 viii 圖目錄 ix 符號說明 xiii 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 5 1.3研究方法 6 1.4論文架構 7 第二章 文獻回顧 9 2.1微型重組器與熱源整合相關研究 9 2.2 熱交換器設計相關研究 12 2.3 微流道雙相流相關研究 13 2.4 微流道原位測量相關研究 15 第三章 微型產氫裝置製作與實驗系統 16 3.1 微型產氫裝置製作 16 3.1.1微機電製程基本原理 16 3.1.2微流道熱交換器製程 18 3.1.3微流道甲醇重組器製程 21 3.1.4微型產氫裝置製程與設計 25 3.1.5測試段設計 27 3.2 實驗系統 28 3.2.1 實驗設備環路 29 3.2.2 注射式泵浦 30 3.2.3 進/出口溫度量測數據擷取系統 30 3.2.4 影像擷取系統 31 3.2.5 紅外線測溫儀 31 3.3 實驗步驟 32 3.4 紅外線測溫儀校正 35 3.4.1 黑體輻射理論 35 3.4.2 克希荷夫定律 36 3.4.3 放射率實驗 36 3.4.4 紅外線測溫儀校正實驗 39 3.5 微型產氫裝數據分析 41 3.5.1 微型產氫裝置進料與產物分析 41 3.5.2 微型產氫裝置熱產生、熱損與熱效益分析 42 第四章 結果與討論 45 4.1 進料比例與加熱功率最佳化 45 4.1.1 氧氣流量對產氫效能影響 45 4.1.2 甲醇流量與加熱功率對產氫效能影響 48 4.2 熱場分析-氧氣流量的效應 49 4.2.1 小流量氧氣熱場變化分析 50 4.2.2 大流量氧氣熱場變化分析 56 4.3 熱場分析-甲醇流量的效應與最佳化參數分析 60 4.3.1 進料型態與達類穩態時間討論 60 4.3.2 甲醇流量熱場變化分析 63 4.3.3 甲醇重組器平均溫度比較 67 4.3.4 熱效益與熱損比較 68 4.3.5 最佳化參數分析 69 4.4熱場分析-加熱功率的效應 70 第五章 結論與未來建議 76 5.1本論文研究成果 76 5.2本論文未來建議 78 參考資料 79

    [1] 台灣經濟部能源局, ”能源供給與消費流程圖,” 能源計年報.
    [2] 石油巨頭英國石油公司,” 世界能源統計報告2013, 2013.
    [3] R. O’Hayre, S.W. Cha, W. Colella, F.B. Prinz, “Fuel Cell Fundamentals,” John Wiley & Sons, Inc..
    [4] 王誠,毛宗强,陳荣華,王革華,谢曉峰, “小型燃料电池的研究現狀與應用前景分析,” PROGRESS IN CHEMISTRY, Vol. 18 No. 1, 2006.
    [5] D.E. Park, T.Kim, S.Kwon, C.K. Kim, E.Yoon,” Micromachined methanol steam reforming system as a hydrogen supplier for portable proton exchange membrane fuel cells,” Sensors and Actuators A, Vol.135,pp.58–66,2007.
    [6] O. Kwon, D.H. Yoon, J.J. Kim, “Silicon-based miniaturized reformer with methanol catalytic burner,” Chemical Engineering Journal, Vol. 140, pp. 466–472, 2008.
    [7] T. Kim, “Micro methanol reformer combined with a catalytic combustor for a PEM fuel cell,” international journal of hydrogen energy, Vol. 34, pp. 6790 – 6798, 2009.
    [8] K.F. Lo and S.C. Wong, “A passively-fed methanol steam reformer with catalytic combustor heater,” international journal of hydrogen energy, Vol. 36, pp.10719-10726, 2011.
    [9] V. Jaggi and S. Jayanti, “A conceptual model of a high-efficiency, stand-alone power unit based on a fuel cell stack with an integrated auto-thermal ethanol reformer,” Applied Energy, Vol.110, pp. 295–303, 2013.
    [10] C. Pan and C.T. Lu, "Bubble dynamics for convective boiling in sillicon-based, converging and diverging microchannels," International Heat Transfer Conference vol. 28, p. 28-39, 2006.
    [11] R.Y. Miura, F.C.C. Galeazzo, C.C. Tadini, J.A.W. Gut, “The effect of flow arrangement on the pressure drop of plate heat exchangers,” Chemical Engineering Science, Vol. 63, pp. 5386 – 5393,2008.
    [12] H. Cao, G. Chen, Q. Yuan, “Thermal Performance of Crossflow Microchannel Heat Exchangers,” Ind. Eng. Chem. Res., Vol. 49, pp. 6215–6220, 2010.
    [13] B. Mathew and H. Hegab, “Modeling non-adiabatic parallel flow microchannel heat exchangers,” International Journal of Thermal Sciences, Vol. 50, pp. 350-360, 2011
    [14] T. Dang and J.T. Teng, “The effects of configurations on the performance of microchannel counter-flow heat exchangerseAn experimental study,” Applied Thermal Engineering, Vol. 31, pp. 3946-3955, 2011.
    [15] T.L. Liu, B.R. Fu, C. Pan, ”Boiling two-phase flow and efficiency of co- and counter-current microchannel heat exchangers with gas heating,” International Journal of Heat and Mass Transfer, Vol. 55, pp. 6130–6141,2012.
    [16] Y. Yang, G.L. Morini, J.J. Brandner, ” Experimental analysis of the influence of wall axial conduction on gas-to-gas micro heat exchanger effectiveness.” International Journal of Heat and Mass Transfer, Vol. 69, pp. 17–25, 2014
    [17] L. Tadrist, "Review on two-phase flow instabilities in narrow spaces," International Journal of Heat and Fluid Flow, vol. 28, pp. 54-62, 2007.
    [18] W.L. Chen, M.C. Twu, C. Pan,” Gas–liquid two-phase flow in micro-channels,” International Journal of Multiphase Flow, Vol. 28, pp. 1235–1247, 2002.
    [19] S. Saisorn and S. Wongwises,” Flow pattern, void fraction and pressure drop of two-phase air–water flow in a horizontal circular micro-channel,” Experimental Thermal and Fluid Science, Vol. 32, pp. 748–760,2008.
    [20] S. Saisorn and S. Wongwises, “An experimental investigation of two-phase
    air–water flow through a horizontal circular micro-channel,” Experimental Thermal and Fluid Science, Vol. 33, pp. 306–315, 2009.
    [21] M. Kaji, T. Sawai, Y. Kagi, T. Ueda,” Heat transfer and fluid dynamics of air–water two-phase flow in micro-channels,” Experimental Thermal and Fluid Science, Vol. 34,pp. 446–453, 2010.
    [22] C.T. Lu and C. Pan, “Convective boiling in a parallel microchannel heat sink with a diverging cross section and artificial nucleation sites,” Experimental Thermal and Fluid Science, Vol. 35, 810–815, 2011.
    [23] C.Y. Lee, S.J. Lee, C.C. Shen, C.T. Yeh, C.C. Chang,Y.M. Chang, “In-situ measurement of the local temperature distributions for the steam reforming of a methanol micro reformer by using flexible micro temperature sensors,” International journal of hydrogen energy, Vol. 3 6, pp. 2869 -2876, 2011.
    [24] T.L. Liu and Chin Pan, “Infrared thermography for the measurements of boiling two-phase flow heat transfer in a microchannel,” 8th International Conference on Multiphase Flow ICMF 2013, 2013.
    [25] Y. W. and K. Sefiane, ”Effects of Heat Flux, Vapour Quality, Channel Hydraulic Diameter on Flow Boiling Heat Transfer in Variable Aspect Ratio Micro-channels Using Transparent Heating,” International Journal of Heat and Mass Transfer, Vol. 55, pp. 2235–2243,2012.
    [26] Y. Wanga, K. Sefiane, S. Harmand, “Flow Boiling in High-aspect Ratio Mini- and Micro-channels with FC-72 and Ethanol: Experimental Results and Heat Transfer Correlation Assessments,” Experimental Thermal and Fluid Science, Vol. 36, pp. 93–106, 2012.
    [27] S. Szczukiewicz, N. Borhani, J.R. Thome, “Two-phase Heat transfer and High-speed Visualization of Refrigerant Flows in 100 × 100 m2 Silicon Multi-microchannels,” International journal of refrigeration, Vol. 36, pp. 402-413, 2013.
    [28] 楊龍杰, “認識微機電 1 ed.,”滄海書局, 2001.
    [29] S.P. Lai, K.Y. Huang, H.C. Peng, Y.J. Huang, F.G. Tseng, “Low Temperature POM Micro-Reformer with Silicon Nano-Wire Supported Nano Catalysts,” Micro TAS 2013, 2013.
    [30] F. ResearchIR, “FLIR R&D 軟體1.2版使用說明書,” Publ. No. T559464 Rev. a449-traditional chinese (ZH-TW), 2010.
    [31] M.J. Moran, H. N. Shapiro, D.D. Boettner, M.B. Bailey, “Principles of Engineering Thermodynamics SI version.”
    [32] J.M.Smith, H.C. Van Ness, M.M. Abbott, “化工熱力學,” The McGraw-Hill Companies, Inc
    [33] K.M.de Reuck and R.J.B.Craven, ”Methanol, International thermodynamic tables of the fluid state- 12,” IUPAC, Blackwell Scientific Publications, 1993.
    [34] B.A. Younglove, “Thermophysical Properties of Fluids. I. Argon, Ethylene, Parahydrogen, Nitrogen, Nitrogen Trifluoride, and Oxygen,” J. Phys. Chem. Ref. Data, 1982.
    [35] W. Wagner and A.Pruss, ”The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use,” J. Phys. Chem. Ref. Data, pp.387-535, 2002.
    [36] J.W. Leachman, R.T. Jacobsen, E.W. Lemmon, “Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen,” J. Phys. Chem. Ref. Data, 2008.
    [37] J.F. Ely, J.W. Magee, W.M. Haynes, ”Thermophysical Properties for Special High CO2 Content Mixtures, Research Report RR-110,” Gas Processors Association, 1987.
    [38] R.D. McCarty, ”Correlations for the Thermophysical Properties of Carbon Monoxide,” National Institute of Standards and Technology, 1989.
    [39] F. P. Incropera, D.P. Dewitt, T.L. Bergman, A.S. Lavine, “Fundamentals of Heat and Mass Transfer Sixth Edition,” 2005.
    [40] 王大庚, 鄧夫, 曹培熙, ”基本近代物理學,” 徐氏文教基金會, 2009.
    [41] P. Griffiths and J.A. de Hasseth, ”Fourier Transform Infrared Spectrometry 2nd. Wiley-Blackwell.,” ISBN 0-471-19404-2., 2007.
    [42] C. V. Loan, ”Computational Frameworks for the Fast Fourier Transform,” SIAM, 1992.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE