研究生: |
劉宇城 Liu, Yu-Cheng |
---|---|
論文名稱: |
機器學習應用於矽晶圓圓邊研磨品質預測 Application of machine learning to the quality prediction of silicon wafer edge-grinding process |
指導教授: |
葉哲良
Yeh, Jer-Liang |
口試委員: |
鄭志鈞
Jheng, Jhih-Jyun 蔡孟勳 Tsai, Meng-Shiun 徐文慶 Hsu, Wen-Ching 江振國 Chiang, Chen-Kuo |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 214 |
中文關鍵詞: | 矽晶圓圆邊 、振動訊號 、聲音訊號 、機器學習 、加工過程監控 |
外文關鍵詞: | Silicon wafer grinding, vibration signal, sound signal, machine learning, process monitoring |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在晶圓加工過程中,晶柱(Ingot)經切片(Slicing)後需透過圓邊(Edge Grinding)製程來防止後績加工過程中產生碎邊(Chipping)或汙染微粒。然而,因連績且大量的生產過程,以現行的品檢及預防維護的方式,容易造成人為誤判,導致研磨砂輪更換時機的延誤,使得研磨機台容易因問題累積而加工出報廢品或產品需要重工(rework),進而提高加工成本。本研究透過在加工機台上安裝加速規與參克風,透過訊號擷取與分析,探討矽晶圆圓邊製程中時域、頻域訊號,將時頻域訊號針對機台加工特性擷取重要特徵建立特徵資料集,利用機器學習回歸模型建模,並用晶圓品質最為標籤標記資料,藉預測晶片倒角值,間接監測砂輪磨耗狀況,提早發現機台問題,在下次加工前採取對應手段。
In the process of wafer processing, the ingot must be sliced and then cut through the edge grinding process to prevent chipping or contamination particles during the subsequent processing. However, due to the continuous and large-scale production process, the current quality inspection and preventive maintenance methods are easy to cause human misjudgment, resulting in delays in the replacement of the grinding wheel, and the grinding machine is likely to process scrap or products due to accumulation of problems. Rework is required, which in turn increases processing costs. In this research, through the installation of accelerometers and parameters on the processing machine, through signal acquisition and analysis, the relationship between time domain and frequency domain signals, grinding wheel wear and wafer quality in the silicon wafer rounding process is explored, and early discovery For machine problems, predict the quality of wafers and take corresponding measures before the next processing.
[1] M. Bhuiyan, I. Choudhury. 13.22—Review of sensor applications in tool condition monitoring in machining. Comprehensive Materials Processing 13: 539-569,2014.
[2] Y.Lei, B.Yang, X.Jiang , F. Jia, N.Li & A. K.Nandi. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mechanical Systems and Signal Processing, 138, 106587.L,2020.
[3] I. Inasaki & K. Okamura. Monitoring of dressing and grinding processes with acoustic emission signals. CIRP Annals,34(1), 277-280,1985.
[4] P. O. Junior, P. R. Aguiar, C. R. Foschini, T. V. França, D. M. Ribeiro, F. I. Ferreira, & E.C. Bianchi. Feature extraction using frequency spectrum and time domain analysis of vibration signals to monitoring advanced ceramic in grinding process. IET Science, Measurement & Technology,13(1), 1-8, 2019.
[5] K.Kannan, N. Arunachalam. Grinding wheel redress life estimation using force and surface texture analysis. Procedia CIRP 72: 1439-1444,2018.
[6] 黃詩涵,主軸振動與聲音訊號於晶圓磨削之應用研究,國立清華大學奈米工程與微系統所,碩士論文,2019。
[7] S.Cho , S.Binsaeid, & S. Asfour. Design of multisensor fusion-based tool condition monitoring system in end milling.The International Journal of Advanced Manufacturing Technology,46(5), 681-694, 2010.
[8] M.Hamadache, J. H.Jung, J.Park, & B. D.Youn. A comprehensive review of artificial intelligence-based approaches for rolling element bearing PHM: shallow and deep learning. JMST Advances,1(1), 125-151, 2019.
[9] X.Li and Y. Zhejun. Tool wear monitoring with wavelet packet transform—fuzzy clustering method. Wear 219(2): 145-154,1998.
[10] D.G.Manolakis, V.K. Ingle .Applied Digital Signal Processing ,Cambridge, New York, 2011.
[11] F.Al-Badour, M.Sunar, & L.Cheded. Vibration analysis of rotating machinery using time–frequency analysis and wavelet techniques.Mechanical Systems and Signal Processing,25(6), 2083-2101, 2011.
[12] Y.Yabin, & Z.Liqiang. Process Research Based on Wavelet Analysis in Chatter Monitoring. In 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE)(pp. 708-711)IEEE, 2019.
[13] E.Kolman, & M. Margaliot. Are artificial neural networks white boxes?. IEEE Transactions on Neural Networks, 16(4), 844-852, 2005.
[14] L.Breiman. Random forests. Machine learning, 45(1), 5-32,2001.
[15] X.Xue, C.Li, S.Cao, J.Sun, & L.Liu. Fault diagnosis of rolling element bearings with a two-step scheme based on permutation entropy and random forests. Entropy, 21(1), 96,2019.
[16] S.V.Dahe, G. S.Manikandan, R. Jegadeeshwaran, , G.Sakthivel, & J.Lakshmipathi. Tool condition monitoring using Random forest and FURIA through statistical learning. Materials Today: Proceedings, 2021.
[17] B. S.Yang, X.Di, & T.Han. Random forests classifier for machine fault diagnosis. Journal of mechanical science and technology,22(9), 1716-1725, 2008.
[18] J.Bergstra, & Y.Bengio. Random search for hyper-parameter optimization. Journal of machine learning research, 13(2),2012.
[19] A.V.Oppenheim, A.S.Willsky, S. H.Nawab. Signals and systems, PRENTICE HALL, NEW JERSEY,1997.
[20] H.T.Lin.Machine Learning Techniques, Blending and Bagging,2018.
[21] T.Han, D.Jiang, Q.Zhao, L.Wang, &K.Yin. Comparison of random forest, artificial neural networks and support vector machine for intelligent diagnosis of rotating machinery.Transactions of the Institute of Measurement and Control,40(8), 2681-2693,2018.
[22] G.Xu, M.Liu, Z.Jiang, D.Söffker, & W. Shen. Bearing fault diagnosis method based on deep convolutional neural network and random forest ensemble learning.Sensors,19(5), 1088,2019.
[23] M.Hamadache, J. H.Jung, J.Park, & B. D.Youn. A comprehensive review of artificial intelligence-based approaches for rolling element bearing PHM: shallow and deep learning. JMST Advances,1(1), 125-151,2019.
[24] J.Chen, H.Chen, J.Xu, J.Wang, X.Zhang, & X.Chen. Acoustic signal-based tool condition monitoring in belt grinding of nickel-based superalloys using RF classifier and MLR algorithm.The International Journal of Advanced Manufacturing Technology,98(1), 859-872,2018.
[25] M.Cerrada, G.Zurita, D.Cabrera, R. V.Sánchez, M.Artés, & C.Li. Fault diagnosis in spur gears based on genetic algorithm and random forest. Mechanical Systems and Signal Processing, 70, 87-103,2016.
[26] M.Same, G.Gandubert, G.Gleeton, P.Ivanov, & R. Landry. Simplified welch algorithm for spectrum monitoring. Applied Sciences, 11(1), 86,2021.
[27] Walpole, Ronald E., et al. Probability and statistics for engineers and scientists. Vol. 5. New York: Macmillan, 1993.