研究生: |
黃琬萱 Huang, Wan-Hsuan |
---|---|
論文名稱: |
含裂縫奈米複材三明治結構之能量釋放率研究 Energy Release Rate of Sandwich Structure with MWNTs/Polymer Nanocomposite as Core Material Containing Facesheet/Core Debonding |
指導教授: |
葉孟考
Yeh, Meng-Kao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 92 |
中文關鍵詞: | 三明治結構 、脫膠 、奈米複合材料 、末端刻痕彎曲測試 、能量釋放率 、奈米碳管 |
外文關鍵詞: | Sandwich structure, Debonding, Nanocomposites, End-notched flexure, Strain energy release rate, Carbon nanotube |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三明治結構為最常見之複合材料結構,係由高比強度(Strength-to-Weight)及高比勁度(Stiffness-to-Weight)之面材(Facesheet)與質輕之芯材(Core Material)膠結構成,因此易於面材與芯材之接合面產生裂縫形成脫膠(Debonding),進而影響整體結構強度造成損壞。
本文採用由兩複合材料構成之奈米複材三明治結構;面材為碳纖維疊層板,芯材為多壁奈米碳管/環氧樹脂高分子材料,以環氧樹脂為黏著劑接合。文中利用田口法(Taguchi’s Method),以面材疊層角度、芯材多壁奈米碳管含量與預裂縫長度三者為參數,規劃兩組實驗跨距與試片尺寸,探討此含預裂縫之奈米複材三明治結構在三點彎曲末端刻痕(End Notched Flexure, ENF)試驗下的最大負載與臨界能量釋放率。文中,利用信號雜訊比 (S/N ratio)與因子反應分析找出三明治樑最大負載之最佳參數組合,並以變異數分析(ANVOA)產生最佳值預測;最後以虛擬裂縫擴展法(Virtual Crack Extension Method)進行臨界能量釋放率(Critical Energy Release Rate, Gc)之有限單元分析,並與實驗結果相互比較。結果顯示,在跨距80 mm實驗中,最佳參數組合為面材疊層角度[0°/±45°/90°]s、芯材碳管含量1 wt%、裂縫長度57 mm;在跨距50 mm實驗中,最佳參數組合為面材疊層角度[0°/±45°/90°]s、芯材碳管含量1 wt%、裂縫長度45mm。
Sandwich structure is one of the most common composite structures. It combines a high specific strength, high specific stiffness facesheet glued with light-weighted core material, so it is easy to have interfacial crack which induces debonding and influence structural strength to produce structural collapse.
Sandwich structure in this study fabricated by two composites to form a nano-composite sandwich structure; graphite fiber reinforced polymer(GFRP) laminate is used as facesheet and MWNTs/epoxy corematerial is glued to it by epoxy. With three parameters, facesheet stacking sequence, weight percent of MWNTs in core and length of pre-crack, Taguchi’s method is used in this article to discuss the maximum load and critical energy release rate of two different test spans and specimen size in three point bending end notched flexure (ENF) test. The optimal parameters were determined by Signal to Noise ratio (S/N ratio) and influences of paramenters, then Analysis of Variance ANOVA is used to find the optimal maximum load. Virtual crack extension method is used to calculate the critical energy release rate in finite element analysis and results were compared to experimental results. The test results showed that when test span is 80 mm, the optimal parameters are facesheet stacking sequence [0°/±45°/90°]s, 1 wt% MWNTs/epoxy corematerial and 57 mm pre-crack length; for test span is 50 mm, the optimal parameters are facesheet stacking sequence [0°/±45°/90°]s, 1 wt% MWNTs/epoxy corematerial and 45 mm pre-crack length.
參考文獻
1. M. K. Yeh and S. S. Ho, “Buckling of Delaminated Cylindrical Composite Panel Under Axial Compression,” 2nd International Conference on Composites Engineering, ICCE/2, August 21-24, New Orleans, LA, pp. 845-846, 1995.
2. S. S. Ho and M. K. Yeh, “Effects of Geometrical Imperfections on the Buckling of Cured Cylindrical Composite Panels,” The 19nd on Theoretical and Applied Mechanics, Taoyuan, Taiwan, ROC, December 8-9, pp. 153-160, 1995.
3. H. Y. Ling, K. T. Lau and C. K. Lam, “Effects of Embedded Optical Fibre on Mode II Fracture Behaviours of Woven Composite Laminates,” Composites: Part B, Vol. 36, pp. 534-543, 2005.
4. A. Agrawal and A. M. Karlsson, “On the Reference Length and Mode Mixity for a Bimaterial Interface,” Journal of Engineering Materials and Technology, Vol. 129, pp. 580-589, 2007.
5. J. Wang and P. Qiao, “Analysis of Beam-Type Fracture Secimens with Crack-Tip Deformation,” International Journal of Fracture, Vol. 132, pp. 232-248, 2005.
6. L. Kucherov and M. Ryvkin, “Interface Crack In Periodically Layered Bimaterial Composite,” International Journal of Fracture, Vol. 117, pp. 175-194, 2002.
7. J. Hohe and W. Becker, “Assessment of the Delamination Hazard of the Core Face Sheet Bond in Structural Sandwich Panels,” International Journal of Fracture, Vol. 109, pp. 413-432, 2001.
8. S. J. Huang, “Mathematical Modeling of the Stress-strain State of Adhesive Layers in Sandwich Structures,” Mechanics of Composite Material, Vol. 38, pp. 103-120, 2002.
9. Y.B. Cho and R.C. Averill, “First-order Zig-zag Sublamination Plate Theory and Finite Element Model for Laminated Composite and Sandwich Panels,” Composite Structures, Vol. 50, pp. 1-15, 2000.
10. J. M. Bai and C. T. Sun, “The Effect of Viscoelastic Adhesive Layers on Structural Damping of Sandwich Beams,” Mechanics Based Design of Structures and Machines: An International Journal, Vol. 23, pp. 1-16, 1995.
11. 王文毅,複合三明治結構膠黏層的黏彈性質分析,國立中正大學機械工程研究所碩士論文,2002。
12. 蕭銘志,三明治板的挫屈分析-五層理論法,國立中正大學機械工程研究所碩士論文,2005。
13. V. Vadakke and L.A. Carlsson, “Experimental Investigation of Compression Failure of Sandwich Specimens with Facecore Debond,” Composites: Part B, Vol. 35, pp. 583-590, 2004.
14. V. P. Veedu and L.A. Carlsson, “Finite-Element Buckling Analysis of Sandwich Columns Containinga Face/Core Debond,” Composite Structures 69 , Vol. 69, pp. 143-148, 2005.
15. H. Y. Kim and W. Hwang, “Effect of Debonding on Frequencies and Frequency Response Functions of Honeycomb Sandwich,” Composite Structures, Vol. 55, pp. 51-62, 2002.
16. H. Mahfuz, S. Islam, M Saha, L. Carlsson and S. Jeelani, “Buckling of Sandwich Composites Effects of Core–Skin Debonding and Core Density,” Applied Composite Materials, Vol. 12, pp. 73-91, 2005.
17. R.C. Østergaard, “Buckling Driven Debonding in Sandwich Columns,” International Journal of Solids and Structures , Vol. 45, pp. 1264-1282, 2008.
18. A. L. Mouritz and R. S. Thomson, “Compression, Flexure and Shear Properties of A Sandwich Composite Containing Defects,” Composite Structures, Vol. 44, pp. 263-278, 1999.
19. B. O. Baba and S. Thoppul, “Experimental Evaluation of The Vibration Behavior of Flat and Curved Sandwich Composite Beams with Face/Core Debond,” Composite Structures, Vol. 91, pp. 110-119, 2009.
20. S. Goswami and W. Becker, “Analysis of Debonding Fracture In A Sandwich Plate with Hexagonal Core,” Composite Structures, Vol. 49, pp. 385-392, 2000.
21. G. C. Papanicolaou and D. Bakos, “Interlaminar Fracture Behavior of Sandwich Structures,” Composites: Part A, Vol. 27, pp. 165-173, 1996.
22. A. Ural, Alan T. Zehnder and Anthony R. Ingraffea, “Fracture Mechanics Approach to Facesheet Delamination in Honeycomb: Measurement of Energy Release Rate of The Adhesive Bond”, Engineering Fracture Mechanics, Vol. 70, pp. 93-103, 2003.
23. S. D. Pan, L.Z. Wu, Y. G.. Sun and Z. G. Zhou, “Fracture Test for Double Cantilever Beam of Honeycomb Sandwich Panels,” Materail Letters, Vol. 62, pp. 523-526, 2008.
24. D. L. Grau, X. S. Qiu and B. V. Sankar, “Relation Between Interfacial Fracture Toughness and Mode-mixity in Honeycomb Core Sandwich Composites,” Journal of Sandwich Structures and Materials, Vol. 8, pp. 287-203, 2006.
25. P. Compston, P.-Y.B. Jar, P.J. Burchill and K. Takahashi, “The Effect of Matrix Toughness and Loading Rate on The Mode-II Interlaminar Fracture Toughness of Glass-fibre/Vinyl-ester Composites,” Composites Science and Technology, Vol. 61, pp. 321-333, 2001.
26. A. Quispitupa, C. Berggreen and L.A. Carlsson, “On the Analysis of a Mixed Mode Bending Sandwich Specimen or Debond Fracture Characterization,” Engineering Fracture Mechanics, Vol. 76, pp. 594–613, 2009.
27. M. Arai, Y. Noro, K.I Sugimoto and M. Endo, “Mode I and Mode II Interlaminar Fracture Toughness of CFRP Laminates Toughened by Carbon Nanofiber Interlayer,” Composites Science and Technology, Vol. 68, pp. 516-525, 2008.
28. F. Avilés and L.A. Carlsson, “Analysis of The Sandwich DCB Specimen for Debond Characterization,” Engineering Fracture Mechanics, Vol. 75, pp. 153-168, 2008.
29. P. Majumdar, D. Srinivasagupta, H. Mahfuz, B. Joseph, M. M. Thomas and S. Christensen, “Effect of Processing Conditions and Material Properties On The Debond,” Composites: Part A , Vol. 34, pp. 1079-1104, 2003.
30. S. Goswami and W. Becker, “The Effect of Facesheet Core Delamination in Sandwich Structures under Transverse Loading,” Composite Structures, Vol. 54, pp. 525-521, 2001.
31. D. R. Veazie, K. R. Robinson and K. Shivakumar, “Effects of The Marine Environment on The Interfacial Fracture Toughness,” Composites: Part B, Vol. 35, pp. 461-466, 2004.
32. H. L. Fan, F. H. Meng, and W. Yang, “Sandwich Panels with Kagome Lattice Cores Reinforced by Carbon Fibers,” Composite Structures, Vol. 81, pp. 533-539, 2007.
33. M. Styles, P. Compston and S. Kalyanasundaram, “The Effect of Core Thickness on The Fexural Behaviour of Aluminium Foam Sandwich Structures,” Composite Structures, Vol. 80, pp. 532-538, 2007.
34. C. Borsellino, L. Calabrese and A. Valenza, “Experimental and Numerical Evaluation of Sandwich Composite Structures,” Composites Science and Technology, Vol. 64, pp. 1709-1715, 2004.
35. J. Kim and S R. Swanson, “Design of Sandwich Structures for Concentrate Loading,” Composite Structures, Vol. 52, pp. 365-373, 2001.
36. B. Fiedler, F. H. Gojny, M. H. C. Wichmann, M. C.M. Nolte, and K. Schulte, “Fundamental Aspects of Nano-Rreinforced Composites,” Composites Science and Technology, Vol. 66, pp. 3115-3125, 2006.
37. 劉家豪,多壁奈米碳管/酚醛樹脂複合材料之機械性質研究,國立清華大學動力機械工程研究所碩士論文,2004。
38. J. Hohe and W. Becker, “Assessment of The Delamination Hazard of The Core Face Sheet Bond in Structural Sandwich Panels,” International Journal of Fracture, Vol. 109, pp. 413-432, 2001.
39. Y. Zhou, F. Pervin, L. Lewis and S. Jeelani, “Fabrication and Characterization of Carbonepoxy Composites Mixed with Multi-Walled Carbon Nanotubes,” Materials Science and Engineering A, Vol. 475, pp. 157-165, 2008.
40. ANSYS Release 10.0, ANSYS, Inc., PA, 2006.
41. 藤井太一、座古勝,劉松柏譯,複合材料的破壞與力學,五南圖書出版股份有限公司,台灣台北,2006。
42. David Broek原著,陳兆勛譯,破裂力學之實際應用,國立編譯館,台灣台北,1999。
43. T. Yokozeki, T. Ogasawara and T. Aoki, “Correction method for evaluation of interfacial fracture toughnessof DCB, ENF and MMB specimens with residual thermal stresses” Composites Science and Technology , Vol. 68, pp. 760–767,2008
44. J. W. Dally and W. F. Riley, “Experimental Stress Analysis,”New York, McGraw-Hill Inc., 1991.
45. 鄭燕琴,田口品質工程技術理論與實務,中華民國品質管制學會,台灣台北,1993。
46. ASTM C393-00, “Standard Test Method for Flexural Properties of Sandwich Constructions,” Annual Book of ASTM Standards, 2000.
47. R. F. Gibson, Principles of Composite Material Mechanics, McGraw-Hill, New York, 2007.
48. K. S. Kim and C. S. Hong, “Delamination Growth in Angle-Ply Laminated Composites,” Journal of Composite Materials, Vol. 20, pp. 423-438, 1986.
49. M. K. Yeh and C. M. Tan, “Buckling of Elliptically Delaminated Composite plates,” Journal of Composite Materials, Vol. 28, No. 1, pp. 36-52, 1994.
50. ASTM D3039-00, “Standard Test Method for Tensile Properties of Fiber-Resin Composites,” Annual Book of ASTM Standards, 2000.
51. ASTM D3518-01, “Standard Practice for Inplane Shear Stress-strain Response of Unidirectional Reinforced Plastics,” Annual Book of ASTM Standards, 2001.
52. L. A. Carlsson and R. B. Pipes, Experimental Characterization of Advanced Composite Materials, New Jersey, Prentic-Hall, 1987.
53. ASTM D638-03, “Standard Test Method for Tensile Properties of Plastics,” Annual Book of ASTM Standards, Vol. 8.2, 1982.