簡易檢索 / 詳目顯示

研究生: 洪玉進
Yu-chin Hung
論文名稱: 溶膠凝膠結合模板技術配製規則多孔性二氧化鈦材質
Assembly of ordered porous structure with sol-gel-derived titanium dioxide and polystyrene
指導教授: 董瑞安
Ruey-an Doong
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 70
中文關鍵詞: 溶膠凝膠技術規則性多孔洞二氧化鈦
外文關鍵詞: sol-gel technique, ordered porous TiO2
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近十幾年來,具高規則多孔洞性結構因其具有相當廣泛的可能性應用,如感測器、高效率的光催化反應、太陽能電池與光子晶體材質等,故其配製技術與其性質探討受到相當大的重視。本研究的目的在於利用溶膠凝膠配合垂直浸漬方法,發展製作規則性孔洞二氧化鈦薄膜結構之單一步驟技術,利用聚苯乙烯球體為模板分子,直接混合溶膠溶液使二氧化鈦溶膠粒子與opal結構同時形成。前驅物(Ti(OC4H9)4)在pH 1時最適合填入於直徑為480-1000 nm模板分子的孔隙之間。在溶膠凝膠的最佳化過程中,聚苯乙烯與二氧化鈦溶膠之體積比為影響多孔性結構的重要因素。在10 mM CTAC的存在下,480、600、1000 nm聚苯乙烯球與二氧化鈦溶膠最佳化的比分別為5/4、5/4與5/2。由熱重及熱差的分析中得知,在424 □C時聚苯乙烯可完全被移除;而在363 □C時,非晶形的二氧化鈦可轉換成anatase。配製的表面結構以SEM觀察時,其具有高度規則多孔洞結構,主要為六角形的排列。XRD顯示TiO2為anatase晶型,晶粒尺寸則為7.98 nm。比表面積的分析可知所製作之多孔洞薄膜為一具高比表面積之結構,其值介於59-84 m2/g間。這些研究結果顯示使用單一步驟溶膠凝膠技術來配製高規則巨孔洞的二氧化鈦材料的可能性,所得之高比表面積規則化結構相當適合作為環境之催化劑之應用。


    The fabrication and characterization of highly ordered porous structure has recently received much attention because of its wide variety of possible applications to sensors, high-performance photocatlysts, solar cells, and photonic band gap materials.
    The purpose of this research is to use sol-gel and dipping methods to fabricate the three-dimensional ordered porous TiO2 structure with high specific surface area. The TiO2 sol solution was directly mixed with the polystyrene, to fabricate order porous materials so that the infiltration of titania colloids and the fabrication of opal structure were carried out at the same time. Titanium tetrabutoxide (Ti(OC4H9)4), a precursor of TiO2 was prepared in an acidic solution to fill the voids between the template microspheres. The polystyrene microspheres ranging between 480 and 1000 nm in diameter were used as the template. Results showed that found that the volume ratio of PS/TiO2 sol is an important factor influencing the fabrication of ordered structures and the optimized ratio was 5/4 for 480 nm, 5/4 for 600 nm and 5/2 for 1000 nm PS in the in the presence of 0.1 mM CTAC. The TGA and DSC analyses showed the complete removal of polystyrene at 424 □C and the phase transformation of TiO2 from amorphous to crystalline anatase at 363 □C. The SEM images clearly showed the highly ordered porous TiO2 structure arranged mainly in hexagonal orientation. The XRD pattern indicates that the crystal phase of TiO2 is anatase with crystallite size of 7.98 nm. The specific surface areas of the fabricated ordered TiO2 structure were in the range of 59-84 m2/g. Results obtained in this study clearly show the feasibility of using one-step sol-gel method to fabricate the highly ordered macroporous TiO2 materials.

    Content Index 中文摘要…………………………………………………………………………………......Ι Abstract…………………………………………………….………………………………...II Content Index………………………………………………………………………….…...III Table Index……………………………………………………………………………..…...VI Figure Index…………………………………………………………………………….....VII Chapter 1 Introduction………………………………………………………….………...1 1-1 Motivation……………………………………………………………………………....1 1-2 Objective………………………………………………………………………………...3 Chapter 2 Background and theory……………………………………………...……...4 2-1 Ordered porous materials………………………………………………………………..4 2-2 Arrangement of template into opal structure……………………………………………7 2-2-1 Self- assembly at a water-air interface…………………………………………....7 2-2-2 Sedimentation through physical confinement and hydrodynamic flow…………..9 2-2-3 Soft lithography………………………….………………………………..……..10 2-2-4 Filtration…………………………………………………………………..……..12 2-2-5 Sedimentation……………………………………………………………..……..13 2-3 Infiltration of voids between templates…………………………………..……………14 2-3-1 Electrochemical deposition…………………………………………….………..14 2-3-2 Dipping method…………………………………………………………….........15 2-3-3 Chemical vapor deposition (CVD) technique…………………….……………..17 2-4 Nanolithography technique…………………………………………….………………18 2-5 Sol-gel chemistry……………………………………………………………………....19 2-5-1 Mechanism of sol-gel technique……………………………………………….19 2-5-2 Application to ordered porous structure……………………………………….22 2-6 Applications………………………………………………………………………...….23 2-6-1 Catalytic application…………………………………………………………......23 2-6-2 Photonic band gap materials……………………………………………..……...24 Chapter 3 Materials methods……………………………………………………..…... 25 3-1 Regents and materials………………………………………………………………….25 3-2 Experimental design………………………………………………………………….25 3-3 Instrumentations…………………………………………………………………….....27 3-3-1 Scanning electron microscopy (SEM) ……………………………………......…27 3-3-2 X-ray powder diffraction analysis (XPRD) ………………….…………………27 3-3-3 Thermogravimetric analysis and differential scanning calorimeter (TGA-DSC).. ………………………………………………………………………………..…28 3-3-4 Surface area analyzer……………………………………….…………………...28 3-3-5 UV-visible………………………………………………………………….....…29 3-4 Preparation of mixing TiO2 sol solution with polystyrene solution…………………...29 3-4-1 TiO2 sol solution…………………………………………………………………29 3-4-2 Polystyrene solution……………………………………………………………..30 3-5 Experimental method………………………………. …………………………...……..30 Chapter 4 Results and discussion……………………………………….. …………….32 4-1 Optimization of sol-gel of titania………………………………………………………32 4-2 Thermal gravitational and differential scanning calorimeter analysis…………………35 4-3 Optimization of fabrication of three-dimensional ordered porous structure…………..38 4-3-1 Optimization of the mixture of sol and PS solution……………………………..38 4-3-2 Effect of surfactant…………………………………………………………...….41 4-3-3 Fabricate of ordered porous titanium……………………………………………46 4-4 Characterization of ordered porous titanium dioxide………………………………….53 4-4-1 Grazing incident X-ray diffraction diffraction analysis………………….……...53 4-4-2 Brunauer–Emmett–Teller (BET) measurement…………………………………55 4-4-3 Band gap measurement………………………………………………………….60 Chapter 5 Conclusions……………………………………………………….. ………....63 References…………………………………………………………………………………...64 Appendix……………………………………………………………………………………..69 Table Index Table 2-1 Summary of the published methods for synthesis of porous materials via colloidal crystal templates………………………………………………………………….5 Table 4-1 The physicochemical property of CTAC, SDS, Brij 30 and Brij 35 surfactants...43 Table 4-2 Optimization of mixture solutions using 480, 600, and 1000 nm polystyrene as template at 55 ℃ and 40-60 % related humidity………………………………48 Table 4-3 The surface areas, pore volume, pore size data for the difference of ordered porous TiO2……………………………………………………………………..56 Table 4-4 Reproducible for fabrication of ordered porous TiO2 using 600 nm polystyrene in diameter…………………………………………………………………………56 Figure Index Figure 2-1 Schematic illustration of self-ordering of PS particles on a water surface. The probability of nucleation increases with increasing rate of water evaporation and buoyancy. After nucleation, particles move toward the ordered regions by convective flow…………………………………………………………………8 Figure 2-2 Schematic outline of the experimental procedure for sedimentation. Aqueous dispersions of polystyrene beads are injected into the cell through the rubber tube using a syringe. The rate of packing of polymer beads increases as the pressure of nitrogen increases…………………………………………………10 Figure 2-3 Schematic illustration of procedures for micromolding in capillaries…………12 Figure 2-4 Shows the method of filtration through into an organic membrane……………13 Figure 2-5 Schematic the diagram of sedimentation in the gravitational field.……………14 Figure 2-6 The electrodeposition in colloidal assemblies………………………………….15 Figure 2-7 Schemes the infiltration of between voids of template using vertical dipping method.………………………………………………………………………...16 Figure 2-8 Schemes diagrams of the apparatus for CVD process………………………….17 Figure 2-9 Schematic drawing of three-dimensional woodpile-structure………………….18 Figure 2-10 The reaction scheme of (a) hydrolysis, (b) condensation and (c) gelation step in sol-gel formation using titanium tetrabutoxide as a precursor………………….21 Figure 2-11 Schematic illustration of the preparation of ordered porous metal oxides by sol–gel chemistry. Latex colloidal crystal templates are infiltrated with sol–gel precursors and dried…………………………………………………………...23 Figure 3-1 The flowchart of the fabrication of ordered porous structure and characterization. ..…………………………………………………………………………………26 Figure 3-2 Schematic illustration of the prepared procedure of the fabrication of porous ordered titanium dioxide. (A) the mixing solution of TiO2 sol and polystyrene, (B) self-assemble process of TiO2 sol and polystyrene particles, (C) composite opal, and (D) ordered porous titanium dioxide structure after removal of the polystyrene particles in the composite opal…………………………………...31 Figure 4-1 The UV-visible spectra in TiO2 sol solution at pH values of 1.0-6.0…………..33 Figure 4-2 The TEM image of the solution of precursor of titanium tetrabutoxide at pH value of a) 1.0 and b) 2.0, respectively………………………………………..34 Figure 4-3 Thermal gravitational analyses of polystyrene after the heat treatment from room temperature up to 600 □C……………………………………………………...36 Figure 4-4 Thermal gravitational analysis of titania after the heat treatment from room temperature to 600 □C…………………………………………………………37 Figure 4-5 Thermal gravitational analysis of titania-polystyrene composites after the heat treatment from room temperature to 600 □C…………………………………..37 Figure 4-6 SEM micrographs of PS latex spheres 460 nm in diameter film obtained by using the vertical dipping method……………………………………………39 Figure 4-7 SEM images of TiO2 porous structures at different volumes of TiO2 sol solution using the vertical dipping method with 480 nm polystyrene as the template…41 Figure 4-8 Effect of CTAC on the fabrication of ordered porous structure using 480 nm polystyrene at the template. The volumes of 0.1 M CTAC used were (a) 222 μl, (b) 2 0 μl, (c) 16 μl, (d) 14 μl, (e) 10 μl, and (f) 2 μl………………………44 Figure 4-9 Effect of volume ratio of SDS to TiO2 sol on the formation of ordered porous structures. The ratios used were (a) 2, (b) 0.8, (c) 0.5, (d) 0.28, and (e) 0.1...45 Figure 4-10 SEM images of 480 nm polystyrene latex sphere and TiO2 sol before calcination by self-assembly of vertical dipping method………………………………….48 Figure 4-11 SEM images at (a) low and (b) high magnification of a typical ordered macroporous TiO2 structure using 480 nm PS microsphere as template…….49 Figure 4-12 SEM image of a typical ordered macroporous TiO2 structure, using 480 nm PS as template showed the (100) orientation region……………………………..50 Figure 4-13 SEM images at (a) low (b) high magnifications of the prepared titanium skeleton with the spherical polystyrene of 600 nm in diameter……………...51 Figure 4-14 SEM images at (a) low (b) high magnifications of a hexagonal packing of air spheres in a titanium inverse opal with by using the polystyrene as template with 1000nm in diameter…………………………………………………….52 Figure 4-15 Low angel X-ray diffraction pattern showing the presence of anatase in an ordered porous titanium dioxide……………………………………………..54 Figure 4-16 Ntrogen adsorption-desoprtion isotherms at –196 ºC for the ordered macroporous using polystyrene with a) 480 nm, b) 600 nm, and c) 1000 nm in diameter…………………………………………………………………..58 Figure 4-17 BJH pore size distribution obtained from the nitrogen adsorption isotherms for the ordered macroporous using polystyrene with a) 480 nm, b) 600 nm, and c) 1000 nm in diameter…………………………………………………59 Figure 4-18 UV-visible absorption spectra of a suspension of ordered porous TiO2…....61 Figure 4-19 The diagram of absorption coefficient and the energy of the wavelength from figure 4-18……………………………………………………………..…..61 Figure 4-20 Graphical determination of the optical band gap of ordered porous TiO2……………………………………………………………..…………62

    1. S. H. Park, D. Qin, and Y. Xia, Crystallization of mesoscale particles over large areas, Adv. Mater., 10, 1028-1032, 1998.
    2. Z.-Z. Gu, S. Kubo, A. Fujishima, and O. Sato, Infiltration of colloidal crystal with nanoparticles using capillary forces: a simple technique for the fabrication of films with an ordered porous structure, Appl. Phys. A, 74, 127–129, 2002.
    3. Z.-Ze Gu, R. Horie, S. Kubo, Y. Yamada, A. Fujishima, and O. Sato, Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index Sensor, Angew. Chem. Int. Ed., 41, 1153-1156, 2002.
    4. Z.-Z. Gu, S. Kubo, A. Fujishima, and O. Sato, Infiltration of colloidal crystal with nanoparticles using capillary forces: a simple technique for the fabrication of films with an ordered porous structure, Appl. Phys. A, 74, 127–129, 2002.
    5. M. Bardosova, P. Hodge, L. Pach, M. E. Pemble, V. Smatko, R. H. Tredgold, D. Whitehead, Synthetic opals made by the Langmuir–Blodgett method, Thin Solid Films, 437, 276–279, 2003.
    6. S. H. Im, Y. T. Lim, and D. J. Suh, Three-dimensional self-assembly of colloids at a water-air interface: a novel technique for the fabrication of photonic bandgap crystals, Adv. Mater., 14, 1367-1369, 2002.
    7. B. T. Holland, C. F. Blanford, A. Tein, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids, Science, 281, 538-540, 1998.
    8. J. E. G. Judith, J. Wijnhoven and W. L. Vos, Preparation of photonic crystals made of air spheres in Titania, Science. 281,802-804, 1998.
    9. M. C. Carbaj, A. Góme, M. J. Torralvo, E. and Enciso, Macroporous silica and titania obtained using poly[styrene-co-(2-hydroxyethyl methacrylate)] as template, J. Mater. Chem., 12, 2740-2746, 2002.
    10. A. Imhof and D. Pine, Ordered macroporous materials by emulsion ,aterials by emulsion templating, Nature, 389, 948-951, 1997.
    11. O. D. Velev and E. W. Kaler, Structured porous materials via colloidal crystal templating: from inorganic oxides to metals, Adv. Mater., 12, 531-534, 2000.
    12. Y. Xia, and G. M. Whitesides, Soft lithography, Annu. Rev. Mater. Sci., 28, 153–184, 1998.
    13. Y. Xia, R. Gates, Y. Yin, and Y. Lu, Monodispersed colloidal spheres: old materials with new applications, Adv. Mater., 12, 693-713, 2000.
    14. P. V. Braun, and P. Wiltzius, Electrochemical fabrication of 3D microperiodic porous materials, Adv. Mater., 13, 482-485, 2001.
    15. A. A. Zakhidov, I. I. Khayrullin, R. H. Baughman, and Z. Iqbat, CVD synthesis of carbon-vased matallic photonic crystals, Nanostruct. Mater., 12, 1089-1095, 1999.
    16. A.Stein, and R. C. Schroden, Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond, Curr. Opin. in Solid State Mater. Sci., 5, 553–564, 2001.
    17. P. Ni, P.Dong, B. Cheng, X. Li, and D. Zhang, Synthetic SiO2 opals, Adv. Mater., 13, 437-441, 2001.
    18. Q.-B. Meng, C.-H. Fu, Y. Einaga, Z.-Z. Gu, A. Fujishima, and O. Sato, Assembly of highly ordered Three-Dimensional Porous structure with nanocrystalline TiO2 semiconductors, Chem. Mater., 14, 83-88, 2000.
    19. Q.-B. Meng,Z.-Z. Gu, and O. Sato, Fabrication of highly ordered porous structures, Appl. Phys. Lett., 77, 4313-4315, 2000.
    20. Y. Xia, B. Gates, Y. Yin, and Y. Lu, Monodisoersed colloidal spheres: old materials with new applications, Adv. Mater., 12, 693-713, 2000.
    21. B. Gates, and Y. Xia, Fabrication and characterization of chirped 3D photoic crystals, Adv. Mater., 12, 1329-1332, 2000.
    22. P. Yang, T. Deng, D. Zhao, P. Feng, D. Pine, B. F. Chmelka, G. M. Whitesides, and G. D. Stucky, Hierarchically Ordered Oxides, Science, 282, 2244-2246, 1998.
    23. P. Yang, A. H. Rizvi, B. Messer, B. F. Chmelka, G. M. Whitesides, G. D. Stucky, Patterning porous oxides within microchannel networks, Adv. Mater., 13, 427-430, 2001.
    24. O. D. Velev, P. M. Tessier, A. M. Lenhoff, E. W. Kaler, A class of porous metallic, nanostructures, Nature, 401, 548, 1999.
    25. P. M. Tessier, O. D. Velev, A. T. Kalambur, A. M. Lenhoff, J. F. Rabolt, E. W. Kaler, Structured metallic films for optical and spectroscopic applications via colloidal crystal templating, Adv. Mater., 13, 396-400, 2001.
    26. K. E. Davis, W. B. Russel, W. J. Glantschnig, Disorder-to-order transition in setting suspensions of colloidal silica: X-ray measurements, Science, 245, 507-510, 1989.
    27. L. N. Donselaar, A. P. Philipse, and J. Suurmond, Concentration-dependent sedimentation of dilute magnetic fluids and magnetic silica dispersions, Langmuir, 13, 6018-6025, 1997.
    28. P. V. Braun, and P. Wiltzius, Electrochemically grown photonic crystals, Nature, 402, 603-604, 1999.
    29. A. A. Zakhidov, R. H. Baughman, and Z. Iqbat, Carbon structures with three-dimensional periodicity at optical wavelengths, Science. 282, 897-901, 1998.
    30. H. Kajii, Y. Kawagishi, H. Take, and K. Yoshinoa, Optical and electrical properties of opal carbon replica and effect of pyrolysis, J. Appl. Phys., 88, 758-763, 2000.
    31. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. Lopez, F. Meseguer, H. Miguez, J. P. Mondia, G. A. Ozin, O. Toader, and H. M. v. Driel, Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres, Nature, 405, 437-440, 2000.
    32. B. T. Holland, C. F. Blanford, A. Stein, Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids, Science. 281, 538-539, 1998.
    33. O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, Microstructured Porous silica Obtained via colloidal crystal templates, Chem. Mater., 10, 3597-3602, 1998.
    34. S.Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, Full three-dimensional photonic bandgap crystals at near-infrared wavelengths, Science. 289,604-606, 2000.
    35. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, three-dimensional photonic crystal operating at infrared wavelengths, Nature, 394, 251-253, 1998.
    36. A. Lebib, Y. Chen, E. Cambril, P. Youinou, V. Studer, M. Natali, A. Pepin, H. M. Janssen, R. P. Sijbesma, Room-temperature and low-pressure nanoimprint lithography, Microelectron. Engi., 61– 62, 371– 377, 2002.
    37. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett., 58, 2059-2062, 1987.
    38. C. Yeh, Applied Photonics (Academic, New York, 1990), Chap. 11.
    39. A. Mekis et al., High transmission through sharp bends in photonic crystal waveguides, Phys. Rev. Lett., 77, 3787-3790, 1996.
    40. S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett., 58, 2486–2489,1987.
    41. M. Abdullah, H. Yoden, K.Okuyama, Optical band gap and ultralow dielectric constant materials prepared by a simple dip coating process, J. of Appl. Phys., 93, 9237-9242, 2003.
    42. P. Jiang, J. Cizeron, J. F. Bertone, V. L. Colvin, Preparation of macroporous metal films from colloidal crystals, J. Am. Chem. Soc. 121, 7957-7958, 1999.
    43. J. I. Pankove, Optical Processes in Semiconductors; Dover: New York, 1971; Chapter 3.
    44. W. N. Delgass, G. L. Haller, R. Kellerman, and J. Lundsford, In Spectroscopy in Heteregeneous Catalysis; Academic Press: New York, 1979; p 128.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE