簡易檢索 / 詳目顯示

研究生: 黃健欽
論文名稱: 基於混和判別監測進行多模態連續製程及多階段批式製程的故障檢測、診斷及判定
Fault detection, diagnosis and isolation for multimode continuous process and multiphase batch process based on mixture discriminant monitoring
指導教授: 姚遠
口試委員: 汪上曉
陳榮輝
姚遠
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 79
中文關鍵詞: 故障檢測故障判定多模態連續製程多階段批式製程監督式學習法混和判別監測法
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了更有效的利用製程故障的數據,監督式學習法(Supervised learning techniques)近年來已被廣泛的研究且應用於製程監測(Process monitoring)上,然而,要良好的使用現有的監督式學習法監測製程,在訓練數據庫中需要包含製程正常操作數據以及所有的製程故障數據。對於真實的工業製程,這個條件通常是很嚴苛的,因為有一些故障並不是時常發生,要收集到此類故障數據較為困難,而且隨著產線設備使用時間增加,機器不免會有老化現象,會出現從沒發生過的未知故障,當這些故障發生時,數據庫中沒有這些故障訊息,導致現存方法無法良好的監測出未知故障。另外,現有監督式學習法用於製程監測上大部分都含有一個強烈的假設,其假設每類別需符合高斯分佈(Gaussian distribution),而在真實工業生產中,製程數據往往無法符合此項假設,導致無法很好的處理非高斯分佈數據。
    本文結合混和判別分析法(Mixture discriminant analysis, MDA)及統計製程控制(Statistical process control, SPC)的概念,發展出一套混和判別監測法(Mixture discriminant monitoring, MDM),對於批式製程獨有的三維數據特性亦發展出自適應批式混和判別監測法(Adaptive batch MDM, ABMDM),同時解決上述兩個問題,於多模態連續製程及多階段批式製程中的製程監測更凸顯其適性。針對監測出已知故障,藉由工程師或操作員對製程的了解可及時的做出故障診斷(Diagnosis),若是監測出未知故障,使用重構方法(Reconstruction-based)來進行故障判定(Isolation)的工作,進而找出故障發生的原因最有可能是由哪一個製程變數造成。
    最後,以田納西伊士曼製程(Tennessee Eastman process)及塑膠射出成型製程的監測為例,驗證此方法的有效性。


    一. 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究動機與目的 7 1.4 文章架構 10 二. 研究方法 11 2.1 多模態連續製程 11 2.1.1 現有方法─費雪判別分析 11 2.1.2 混和判別監測法 13 2.1.2.1 混和判別分析 13 2.1.2.2 在線統計製程控制管制線 17 2.1.2.3 變數重構法 22 2.2 多階段批式製程 25 2.2.1 現有方法─三維批式數據展開 25 2.2.2 現有方法─局部費雪判別分析 28 2.2.3 現有方法─多維度核函數局部費雪判別分析 30 2.2.4 自適應批式混和判別監測法 34 2.2.4.1 混和判別分析 34 2.2.4.2 在線統計製程控制管制線 37 2.2.4.3 變數重構法 39 2.2.4.4 模型自動更新 39 三. 案例研究與討論 42 3.1 多模態連續製程 42 3.1.1 田納西伊士曼製程 42 3.1.2 多類數據建模 49 3.1.3 線上監測已知故障 52 3.1.4 線上監測未知故障 56 3.2 多階段批式製程 63 3.2.1 塑膠射出成型製程及多類數據建模 63 3.2.2 線上監測已知故障 66 3.2.3 線上監測未知故障及模型更新 70 四. 結論 74 五. 參考文獻 75

    [1] T. Kourti and J. MacGregor, "Process analysis, monitoring and diagnosis, using multivariate projection methods," Chemometrics and Intelligent Laboratory Systems, vol. 28, pp. 3-21, 1995.
    [2] A. Raich and A. Cinar, "Statistical process monitoring and disturbance diagnosis in multivariable continuous processes," AIChE Journal, vol. 42, pp. 995-1009, 1996.
    [3] B. Wise and N. Gallagher, "The process chemometrics approach to process monitoring and fault detection," Journal of Process Control, vol. 6, pp. 329-348, 1996.
    [4] E. Martin, A. Morris, and J. Zhang, "Process performance monitoring using multivariate statistical process control," IEE Proceedings-Control Theory and Applications, vol. 143, pp. 132-144, 1996.
    [5] A. AlGhazzawi and B. Lennox, "Monitoring a complex refining process using multivariate statistics," Control Engineering Practice, vol. 16, pp. 294-307, 2008.
    [6] D. Hwang and C. Han, "Real-time monitoring for a process with multiple operating modes," Control Engineering Practice, vol. 7, pp. 891-902, 1999.
    [7] J. Chen and J. Liu, "Mixture principal component analysis models for process monitoring," Industrial & Engineering Chemistry Research, vol. 38, pp. 1478-1488, 1999.
    [8] S. Lane, E. Martin, R. Kooijmans, and A. Morris, "Performance monitoring of a multi-product semi-batch process," Journal of Process Control, vol. 11, pp. 1-11, 2001.
    [9] S. Zhao, J. Zhang, and Y. Xu, "Monitoring of processes with multiple operating modes through multiple principle component analysis models," Industrial & Engineering Chemistry Research, vol. 43, pp. 7025-7035, 2004.
    [10] S. Zhao, J. Zhang, and Y. Xu, "Performance monitoring of processes with multiple operating modes through multiple PLS models," Journal of Process Control, vol. 16, pp. 763-772, 2006.
    [11] Z. Ge, C. Yang, Z. Song, and H. Wang, "Robust online monitoring for multimode processes based on nonlinear external analysis," Industrial & Engineering Chemistry Research, vol. 47, pp. 4775-4783, 2008.
    [12] M. Kano, S. Tanaka, S. Hasebe, I. Hashimoto, H. Ohno, "Monitoring independent components for fault detection," AIChE Journal, vol. 49, pp. 969-976, 2003.
    [13] J. Lee, C. Yoo, I. Lee, "Statistical process monitoring with independent component analysis," Journal of Process Control,vol. 14, pp. 467-485, 2004.
    [14] H. Albazzaz, X. Wang, "Statistical process control charts for batch operations based on independent component analysis," Industrial & Engineering Chemistry Research,vol. 43, pp. 6731-6741, 2004.
    [15] J. Lee, S. Qin, I. Lee, "Fault detection and diagnosis based on modified independent component analysis," AIChE Journal, vol. 52, pp. 3501-3514, 2006.
    [16] U. Thissen, H. Swierenga, A. De Weijer, R. Wehrens, W. Melssen, and L. Buydens, "Multivariate statistical process control using mixture modelling," Journal of chemometrics, vol. 19, pp. 23-31, 2005.
    [17] J. Yu and S. Qin, "Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models," AIChE Journal, vol. 54, pp. 1811-1829, 2008.
    [18] J. Yu and S. Qin, "Multiway Gaussian mixture model based multiphase batch process monitoring," Industrial & Engineering Chemistry Research, vol. 48, pp. 8585-8594, 2009.
    [19] T. Chen, J. Morris, and E. Martin, "Probability density estimation via an infinite Gaussian mixture model: application to statistical process monitoring," Journal of the Royal Statistical Society-Series C (Applied Statistics), vol. 55, pp. 699-716, 2006.
    [20] R. Fisher, "The use of multiple measurements in taxonomic problems," Annals of Human Genetics, vol. 7, pp. 179-188, 1936.
    [21] L. Chiang, E. Russell, and R. Braatz, "Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis," Chemometrics and Intelligent Laboratory Systems, vol. 50, pp. 243-252, 2000.
    [22] L. Chiang, M. Kotanchek, and A. Kordon, "Fault diagnosis based on Fisher discriminant analysis and support vector machines," Computers & Chemical Engineering, vol. 28, pp. 1389-1401, 2004.
    [23] Q. He, S. Qin, and J. Wang, "A new fault diagnosis method using fault directions in Fisher discriminant analysis," AIChE Journal, vol. 51, pp. 555-571, 2005.
    [24] S. Choi, J. Park, and I. Lee, "Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis," Computers & Chemical Engineering, vol. 28, pp. 1377-1387, 2004.
    [25] J. Yu, "Localized Fisher discriminant analysis based complex chemical process monitoring," AIChE Journal, vol. 57, pp. 1817-1828, 2011.
    [26] P. Nomikos, J. MacGregor, "Monitoring batch processes using multiway principal component analysis," AIChE Journal, vol 40, pp. 1361-1375, 1994.
    [27] P. Nomikos, J. MacGregor, "Multivariate SPC charts for monitoring batch processes," Technometrics, vol. 37, pp. 41-59, 1995.
    [28] P. Nomikos, J. MacGregor, "Multi-way partial least squares in monitoring batch processes," Chemometrics and Intelligent Laboratory Systems, vol. 30, pp.97-108, 1995.
    [29] S. Rännar, J. MacGregor, S. Wold, "Adaptive batch monitoring using hierarchical PCA," Chemometrics and Intelligent Laboratory Systems, vol. 41, pp. 73-81, 1998.
    [30] J. Chen, K. Liu, "On-line batch process monitoring using dynamic PCA and dynamic PLS models," Chemical Engineering Science, vol. 57, pp. 63-75, 2002.
    [31] J. Flores-Cerrillo, J. MacGregor, "Multivariate monitoring of batch processes using batch-to-batch information," AIChE Journal, vol. 50, pp. 1219-1228, 2004.
    [32] N. Lu, Y. Yao, F. Gao, F. Wang, "Two-dimensional dynamic PCA for batch process monitoring," AIChE Journal, vol. 51, pp. 3300-3304, 2005.
    [33] C. Ündey, A. Cinar, "Statistical monitoring of multistage, multiphase batch processes," IEEE Control Systems Magazine, vol. 22, pp. 40-52, 2002.
    [34] N. Lu, F. Gao, F. Wang, "Sub-PCA modeling and on-line monitoring strategy for batch processes," AIChE Journal, vol. 50, pp.255-259, 2004.
    [35] C. Zhao, F. Wang, N. Lu, M. Jia, "Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes," Journal of Process Control, vol. 17, pp. 728-741, 2007.
    [36] Y. Yao, F. Gao, "Phase and transition based batch process modeling and online monitoring," Journal of Process Control, vol. 19, pp. 816-826, 2009.
    [37] C. Yoo, J. Lee, P. Vanrolleghem, I. Lee, "On-line monitoring of batch processes using multiway independent component analysis," Chemometrics and Intelligent Laboratory Systems, vol. 71, pp. 151-163, 2004.
    [38] H. Albazzaz, X. Wang, "Statistical process control charts for batch operations based on independent component analysis," Industrial & Engineering Chemistry Research, vol. 43, pp. 6731-6741, 2004.
    [39] H. Cho, K. Kim, "Fault diagnosis of batch processes using discriminant model," International Journal of Production Research, vol.42, pp. 597-612, 2004.
    [40] J. Yu, " Nonlinear Bioprocess Monitoring Using Multiway Kernel Localized Fisher Discriminant Analysis," Industrial & Engineering Chemistry Research, vol. 50, pp. 3390-3402, 2011.
    [41] K. Fukunaga, Introduction to statistical pattern recognition, 2nd ed., New York: Academic Press, 1990.
    [42] Y. Cheng, Y. Zhuang, J. Yang, "Optimal Fisher discriminant analysis using the rank decomposition," Pattern Recognition, vol. 25, pp. 101-111, 1992.
    [43] T. Hastie and R. Tibshirani, "Discriminant analysis by Gaussian mixtures," Journal of the Royal Statistical Society. Series B (Methodological), pp. 155-176, 1996.
    [44] C. Fraley, A. Raftery, "Model-based clustering, discriminant analysis, and density estimation," Journal of the American Statistical Association, vol. 97, pp. 611-631, 2002.
    [45] A. Jain, M. Murty, P. Flynn, "Data clustering: a review," ACM computing surveys, vol. 31, pp. 264-323, 1999.
    [46] T. Kohonen, Self-organization and associative memory, 3 ed., New York: Springer-Verlag, 1989.
    [47] B. Efron, "Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods," Biometrika, vol. 68, pp. 589-599, 1981.
    [48] C. Bishop, Pattern recognition and machine learning, 1 ed., New York: Springer, 2006.
    [49] P. Miller, R. Swanson, C. Heckler, "Contribution plots: a missing link in multivariate quality control," Applied Mathematics and Computer Science, vol. 8, pp. 775-792, 1998.
    [50] A. Conlin, E. Martin, and A. Morris, "Confidence limits for contribution plots," Journal of Chemometrics, vol. 14, pp. 725-736, 2000.
    [51] S. Qin, "Statistical process monitoring: basics and beyond," Journal of chemometrics, vol. 17, pp. 480-502, 2003.
    [52] H. Yue, S. Qin, "Reconstruction-based fault identification using a combined index," Industrial & Engineering Chemistry Research, vol. 40, pp. 4403-4414, 2001.
    [53] D. Cohn, Z. Ghahramani, M. Jordan, "Active learning with statistical models," Journal of Artificial Intelligence Research, vol. 4, pp. 129-145, 1996.
    [54] V. Kariwala, P. Odiowei, Y. Cao, T. Chen, "A branch and bound method for isolation of faulty variables through missing variable analysis," Journal of Process Control, vol. 20, pp. 1198-1206, 2010.
    [55] M. Sugiyama, " Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis," Journal of Machine Learning Research, vol. 8, pp. 1027-1061, 2007.
    [56] J. Downs, E. Vogel, "A plant-wide industrial process control problem," Computers & Chemical Engineering, vol. 17, pp. 245-255, 1993.
    [57] L. Ricker, "Decentralized control of the Tennessee Eastman challenge process," Journal of Process Control, vol. 6, pp. 205-221, 1996.
    [58] S. Yin, S. Ding, A. Haghani, H. Hao, P. Zhang, " A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process," Journal of Process Control, vol. 22, pp. 1567-1581, 2012.
    [59] N. Lu, F. Gao, "Stage-based process analysis and quality prediction for batch processes," Industrial & Engineering Chemistry Research, vol. 44, pp. 3547–3555, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE