簡易檢索 / 詳目顯示

研究生: 黎思宇
Lai, Sih-Yu
論文名稱: 果蠅腦內聽覺神經網路圖譜
Auditory Circuit in the Drosophila Brain
指導教授: 江安世
Chiang, Ann-Shyn
口試委員: 楊嘉鈴
Yang, Jia-Ling
桑自剛
Sang, Tzu-Kang
周雅惠
Chou, Ya-Hui
游宏祥
Yu, Hung-Hsiang
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 74
中文關鍵詞: 觸角機械感測與運動中樞內腹側前腦腹側前腦鈣離子功能影像極性分析投射神經
外文關鍵詞: antennal mechanosensory and motor center, inferior ventrolateral protocerebrum, ventrolateral protocerebrum, calcium imaging, polarity analysis, projection neuron
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 絕大多數的動物們具有先天性的聽覺行為反應,而這些行為反應是經由基因調控的神經網路所形成的。 在果蠅中,聲音是由觸角第二節的聽覺器官(Johnston’s organ) 神經接收訊息,並送到腦內的觸角機械感受與運動中心 (AMMC)。 在本篇論文中,我分析神經網路結構以及神經元與神經元之間的連結,我發現有五種不同的聽覺投射神經元 (auditory projection neurons) 連接三個不同的腦區,這三個腦區由低層到高層分別是觸角機械感受與運動中心 (AMMC),內腹側前腦 (IVLP) 以及腹側前腦 (VLP)。這些聽覺神經元具有功能上的歧異性:AMMC-B1a神經元,AMMC-B1b神經元以及AMMC-A2神經元對聲音有不同的反應 (例如對不同頻率範圍產生反應); 我發現有一種左右對稱的聽覺投射神經元連接左右腦的內腹側前腦區會釋放抑制性神經傳導物質 (GABA); 此外,有一類型的IVLP-VLP神經元對所有的頻率會產生反應。 本研究發現果蠅腦內的聽覺傳遞路徑是經由觸角機械感受與運動中心傳送到內腹側前腦,經處理後再送到腹側前腦。


    Most animals exhibit innate auditory behaviors driven by genetically hardwired neural circuits. In Drosophila, acoustic information is relayed by Johnston’s organ (JO) neurons from the antenna to the antennal mechanosensory and motor center (AMMC) in the brain. Here, by using structural connectivity analysis, I identified 5 distinct types of auditory projection neurons (PNs) interconnecting the AMMC, inferior ventrolateral protocerebrum (IVLP), and ventrolateral protocerebrum (VLP) regions of the central brain. These auditory PNs are also functionally distinct; AMMC-B1a, AMMC-B1b, and AMMC-A2 neurons differ in their responses to sound (i.e., they are narrowly tuned or broadly tuned); 1 type of audio-responsive IVLP commissural PN connecting the 2 hemispheres is GABAergic; and 1 type of IVLP-VLP PN acts as a generalist responding to all tested audio frequencies. My findings delineate an auditory processing pathway involving AMMC→IVLP→VLP in the Drosophila brain.

    謝誌 --------------------------------------------2 中文摘要 ----------------------------------------3 Abstract ----------------------------------------4 1. Specific Aims ----------------------------------5 2. Introduction -----------------------------------5 3. Results ---------------------------------------6 4. Discussions ---------------------------------- 19 5. Materials and Methods ------------------------- 22 6. References ----------------------------------- 26 7. Figures --------------------------------------29 8. Table --------------------------------------- 51 9. Appendix ------------------------------------52 10. Appendix tables ----------------------------- 73

    1. Ewing, Bennet-Clark (1968) The courtship songs of Drosophila. Behaviour 31, 288-301.
    2. Von Schilcher, F (1976) The role of auditory stimuli in the courtship of Drosophila melanogaster. Anim. Behav. 24.
    3. Manoli DS, Meissner GW, Baker BS (2006) Blueprints for behavior: genetic specification of neural circuitry for innate behaviors. Trends Neurosci 29:444-451.
    4. Dickson BJ (2008) Wired for sex: the neurobiology of Drosophila mating decisions. Science 322:904-909.
    5. Ejima A, Griffith LC (2008) Courtship initiation is stimulated by acoustic signals in Drosophila melanogaster. PLoS One 3:e3246.
    6. Villella A, Hall JC (2008) Neurogenetics of courtship and mating in Drosophila. Adv Genet 62:67-184.
    7. Eberl DF, Duyk GM, Perrimon N (1997) A genetic screen for mutations that disrupt an auditory response in Drosophila melanogaster. Proc Natl Acad Sci U S A 94:14837-14842.
    8. Tootoonian S, Coen P, Kawai R, Murthy M (2012) Neural Representations of Courtship Song in the Drosophila Brain. J Neurosci 32:787–798.
    9. Tauber E, Eberl DF (2001) Song production in auditory mutants of Drosophila: the role of sensory feedback. J Comp Physiol A 187:341-348.
    10. Kamikouchi A, Shimada T, Ito K (2006) Comprehensive classification of the auditory sensory projections in the brain of the fruit fly Drosophila melanogaster. J Comp Neurol 499:317-356.
    11. Kernan MJ (2007) Mechanotransduction and auditory transduction in Drosophila. Pflugers Arch 454:703-720.
    12. Yorozu S, et al. (2009) Distinct sensory representations of wind and near-field sound in the Drosophila brain. Nature 458:201-205.
    13. Kamikouchi A, et al. (2009) The neural basis of Drosophila gravity-sensing and hearing. Nature 458:165-171.
    14. O'Neil RG, Heller S (2005) The mechanosensitive nature of TRPV channels. Pflugers Arch 451:193-203.
    15. Todi SV, Franke JD, Kiehart DP, Eberl DF (2005) Myosin VIIA defects, which underlie the Usher 1B syndrome in humans, lead to deafness in Drosophila. Curr Biol 15:862-868.
    16. Gopfert MC, Albert JT, Nadrowski B, Kamikouchi A (2006) Specification of auditory sensitivity by Drosophila TRP channels. Nat Neurosci 9:999-1000.
    17. Todi SV, Sivan-Loukianova E, Jacobs JS, Kiehart DP, Eberl DF (2008) Myosin VIIA, important for human auditory function, is necessary for Drosophila auditory organ development. PLoS One 3:e2115.
    18. Chiang AS, et al. (2011) Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 21:1-11.
    19. Itoh N, et al. (1986) Cloning of Drosophila choline acetyltransferase cDNA. Proc Natl Acad Sci U S A 83:4081-4085.
    20. Testa I, et al. (2008) Spatial control of pa-GFP photoactivation in living cells. J Microsc 230:48-60.
    21. Kazunori S, et al. (2011) Flybrain neuron database: A comprehensive database system of the Drosophila brain neurons. J Comp Neurol 519: 807-833.
    22. Reiff DF, et al. (2005) In vivo performance of genetically encoded indicators of neural activity in flies. J Neurosci 25:4766-4778.
    23. Wong AM, Wang JW, Axel R (2002) Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109:229-241.
    24. Wang J, et al. (2004) Transmembrane/juxtamembrane domain-dependent Dscam distribution and function during mushroom body neuronal morphogenesis. Neuron 43:663-672.
    25. Zhang YQ, Rodesch CK, Broadie K (2002) Living synaptic vesicle marker: synaptotagmin-GFP. Genesis 34:142-145.
    26. Gordon MD, Scott K (2009) Motor control in a Drosophila taste circuit. Neuron 61:373-384.
    27. Allen JM, Godenschwege TA, Tanouye AM, Phelan P (2006) Making an escape: Development and function of the Drosophila giant fibre system. Seminars in Cell & Developmental Biology. 17:31-41.
    28. Dallos P, Corey ME (1991) The role of outer hair cell motility in cochlear tuning. Curr Opin Neurobiol 1:215-220.
    29. Ruggero MA (1992) Responses to sound of the basilar membrane of the mammalian cochlea. Curr Opin Neurobiol 2:449-456.
    30. Rajashekar KP, Shamprasad VR (2004) Maxillary palp glomeruli and ipsilateral projections in the antennal lobe of Drosophila melanogaster. J Biosci 29:423-429.
    31. Sivan-Loukianova E, Eberl DF. (2005) Synaptic ultrastructure of Drosophila Johnston's organ axon terminals as revealed by an enhancer trap. J Comp Neurol 491:46-55.
    32. Wilson R, Laurent G (2005) Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25:9069-9079.
    33. Otsuna H, Ito K (2006) Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. J Comp Neurol 497:928-958.
    34. Miyamoto T, Amrein H (2008) Suppression of male courtship by a Drosophila pheromone receptor. Nat Neurosci 11:874-876.
    35. Lai SL, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9:703-709.
    36. Richard W. D, et al. (2004) Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content. J Neurosci 24:10466 –10474.
    37. Wang JW, Wong AM, Flores J, Vosshall LB, Axel R (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112:271-282.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE