研究生: |
周志銘 Chi-Ming Chou |
---|---|
論文名稱: |
氚的微劑量與奈米劑量研究 The Study on Microdosimetry and Nanodosimetry for Tritium |
指導教授: |
董傳中
Chuan-Jong Tung 趙自強 Tsi-Chian Chao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 氚 、微劑量 、奈米劑量 |
外文關鍵詞: | tritium, microdosimetry, nanodosimetry |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氚為生物圈中常見的一種放射性核種,但以往並不被重視,可是隨著對氚特性的了解,國際間關於氚的研究越來越多,且都可證明氚對於人體可造成嚴重的生物效應。在本研究中,分別用微劑量學與奈米劑量學的觀點來探討當氚均勻分佈在細胞核中,會對人體造成何種影響。在微劑量方面,利用程式PENELOPE模擬可得到頻率平均線性能量、劑量平均線性能量和有效相對生物效應的值,進而評估其輻射品質,模擬結果可得到隨著靶區半徑大小增加,頻率平均線性能量與劑量平均線性能量皆會減少,當靶區大小為假設細胞核半徑1 μm時,得到的有效RBE值趨近於1。而由奈米劑量學來看,利用程式NMC模擬得到氚跟DNA之間距離與DNA雙股斷裂機率的關係,並分別評估彈性碰撞與二次電子對於DNA傷害的影響,本研究發現彈性碰撞與二次電子皆會增加DNA雙股斷裂的機率,尤其是二次電子的影響較大,而當彈性碰撞與二次電子皆有考慮的情況下,氚跟DNA之間距離約為28 nm時,最容易造成DNA的雙股斷裂。最後經由徑跡結構分析來評估不同能量的二次電子對於DNA傷害的影響,可得到當二次電子能量大於150 eV時,容易與主要電子之能量沈積事件產生群集或者形成獨立且複雜的群集,便會增加DNA雙股斷裂的機率。
1. Committee Examining Radiation Risks of Internal Emitters. Tritium: Properties, Metabolism and Dosimetry. 8th Meeting of CERRIE, February 27, 2003, London.
2. Robin L. Hill and John R. Johnson, Metabolism and Dosimetry of Tritium, Health Phys. 65(6), 628-647, 1993
3. D. M. Hamby and T. S. Palmer, Analysis of an Internal Kinetic Model for Free and Bound Tritium. Health Phys. 81, 426-437, 2001
4. International Commission on Radiation Units and Measurements. Microdosimetry. ICRU Report 36, 1983
5. Morstin K, Kopec M, Olko P, Schmitz T, Feinendegen LE, Microdosimetry of Tritium, Institute of Physics and Nuclear Techniques AGH, Krakow, Porland
6. DJ Crawford-Brown, An age-dependent model of tritium metabolism following mixed (organic/inorganic) intakes, Health Phys. Vol. 46, No. 4 (April), 924-928, 1984
7. S. Diabate and S. Strack , Organically Bound Tritium, Health Phys. 65(6), 698-712, 1993
8. J.D. Harrison , A. Khursheed and B.E. Lambert, Uncertainties in dose coefficients for intakes of tritiated water and organically bound forms of tritium by members of the public, Radiat Prot Dosimetry, 299-311, 2002
9. National Council on Radiation Protection & Measurements. Tritium and Other Radionuclide Labeled Organic Compounds Incorporated in Genetic Material. NCRP Report No. 63, 1979
10. International Commission on Radiation Units and Measurements. Radiation quantities and Units. ICRU Report 33,1980
11. P. Pihet, H. G. Menzel, R. Schmidt, M. Beauduin and A. Wambersie, Biological Weighting Function For RBE Specification of Neutron Therapy Beams. Radiation Protection Dosimetry. Vol. 31, No. 1/4, pp.437-442, 1990
12. Salvat F. , Fernandez-Varea J. M. , Acosta E. and Sempau J. “PENELOPE – A Code System for Minte Carlo Simulation of Electron and Photon Transport (version 2001)” . ISBN: 92-64-18475-9
13. Yin-Hsun Hu, Study of Cellular Microdosimetry by Monte Carlo Simulation, Department of Atomic Science, Taiwan, 2005
14. Hsiu-Wen Hsieh, The Study of DNA Nanodosimetry, Department of Atomic Science, Taiwan, 2005
15. Wen-Tung Chan, Low-Energy Electron Interactions with Liquid Water and Energy Depositions in Nanometric Volumes, Department of Atomic Science, Taiwan, 2007
16. Pinak, M. Theoretical Computational Simulation of DNA Damage by Ionizing Radiation. Doctoral dissertation, Department of Quantum Engineering and System Science, The University of Tokyo, 1994
17. Charlton, D. E. and Humm, J.L. A Method for Calculating Initial DNA Strand Breakage Following the Decay of Incorporated 125I. Int. J. Radiat. Biol. 53, 353-356, 1988
18. Alex F Bielajew, HOWFAR and HOWNEAR: Geometry Modeling for Monte Carlo Particle Transport, Draft Version: April 29, 1996