研究生: |
吳佳憲 Wu, Chia-Hsien |
---|---|
論文名稱: |
開發新穎EGFR激酶抑制劑於抗癌藥物之研究 Discovery of Novel EGFR Kinase Inhibitors as Anticancer Agents |
指導教授: |
廖俊臣
Liao, Chun-Chen 謝興邦 Hsieh, Hsing-Pang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 327 |
中文關鍵詞: | 上皮生長因子受器 、激酶抑制劑 、非小細胞肺癌 |
外文關鍵詞: | EGFR, kinase inhibitor, NSCLC |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺癌是當前對人類的健康和生命最具威脅的惡性腫瘤,其中非小
細胞肺癌 (NSCLC)佔了約80% ~ 85%。研究顯示上皮生長因子受器
(EGFR)的過量表現和NSCLC 之間有相當密切的關連。EGFR 為一膜
蛋白,包含了膜外的配體 (ligand)結合受器及膜內的酪胺酸激酶
(tyrosine kinase)。愛瑞莎 (Iressa)和得舒緩 (Tarceva)是兩個通過美國
FDA 的NSCLC 上市藥物,藉由和三磷酸腺苷 (ATP)競爭EGFR 激酶
的活性位置來抑制激酶的活性。但服用愛瑞莎或得舒緩顯現療效的病
患,平均6–12 個月即會產生抗藥性,其中約50%的病患是因為單點
突變 (T790M)造成抗藥性,而使藥物失去效用,因此我們的目標是
發展兼具有一般EGFR 及突變EGFR 激酶抑制活性的化合物,期望在
將來對有抗藥性的病患能提供一個更佳的治療方法。
藉由混成設計(hybrid design)及循理性設計(knowledge-based
design),引入具有立體中心的(S)-phenyl-glycinol 及Michael acceptor
至高通量細胞篩選所獲得出的先導化合物43 中,得到一系列化合物
135,150,175 及178,對EGFR 激酶酵素及EGFR 過度表現的HCC827
肺癌細胞株皆具有1~9 nM 抑制活性,且對愛瑞莎抗藥性的雙突變
EGFR (T790M/L858R)激酶酵素也有10~305 nM 的抑制效果。在結構
與活性的研究中得知,具有立體中心的(S)-phenyl-glycinol 及Michael
acceptor 在抑制EGFR 激酶活性上皆是不可或缺的重要因素,將於論
文中詳述,部分結果已發表於J. Med. Chem. 2010, 53, 7316–7326。
Lung cancer is the first leading cause of death in human cancer, with 80-85% being non-small cell lung cancer (NSCLC). Over-expression of epidermal growth factor receptors (EGFR) is in 40-80% of NSCLC. Gefitinib (Iressa; AstraZeneca Pharmaceuticals) and erlotinib (Tarceva; Genentech, Inc.) were approved by U.S. Food and Drug Administration as EGFR kinase inhibitors for the treatment of adenocarcinoma (subtype of NSCLC). Gefitinib and erlotinib competitively bind to the ATP binding pocket of EGFR tyrosine kinase domain and inhibit its activity. These two drugs showed high response rates in specific subsets of NSCLC patients, but patients become resistant to treatment with gefitinib or erlotinib after 6-12 months. For approximately 50% of patients who respond initially to gefitinib or erlotinib, drug resistance occurs as a result of secondary mutation such as the Thr790 to Met790 (T790M) mutation. We designed and synthesized novel EGFR-TKIs, and expect that we can overcome the resistance issues for potential NSCLC therapy, and developed 2nd generation drugs.
Through hybrid design and knowledge-based design concepts, (S)-phenyl-glycinol and Michael acceptor groups were introduced to high throughput hit 43 to obtain compounds 135, 150, 175 and 178 with 1~9 nM inhibition against wild type EGFR enzyme and EGFR overexpressed HCC827 NSCLC cell-line. This series also showed 10~305 nM inhibition against gefitinib-resistant double mutant EGFR (T790M/L858R) enzyme. More than 150 analogues based on compound 117 were synthesized, presence of (S)-phenyl-glycinol and Michael acceptor groups are essential for activity in this series of compounds and part of the results were published in J. Med. Chem., 2010, 53, 7316–7326.
1. Hayflick, L.; Moorhead, P. S., The serial cultivation of human diploid cell strains. Exp Cell Res 1961, 25, 585-621.
2. http://www.who.int/en/ 世界衛生組織網站.
3. http://www.doh.gov.tw/CHT2006/DM/DM2_2.aspx? now_fod_list_no=10238&
class_no=440&level_no=1. 行政院衛生署網站.
4. Avendano, C. Medicinal Cmenistry of Anticancer Drugs; Elsevier: London, 2008.
5. Tan, C.; Tasaka, H.; Yu, K. P.; Murphy, M. L.; Karnofsky, D. A. Daunomycin, an antitumor antibiotic, in the treatment of neoplastic disease. Clinical evaluation with special reference to childhood leukemia. Cancer 1967, 20, 333-353.
6. Coukell, A. J.; Faulds, D. Epirubicin. An updated review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the management of breast cancer. Drugs 1997, 53, 453-482.
7. (a) Kopka, M. L.; Yoon, C.; Goodsell, D.; Pjura, P.; Dickerson, R. E. The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc. Natl. Acad. Sci. U. S. A. 1985, 82, 1376-1380; (b) Finlay, A. C.; Hochstein, F. A.; Sobin, B. A.; Murphy, F. X. Netropsin, a New Antibiotic Produced by a Streptomyces. Journal of the American Chemical Society 1951, 73, 341-343.
8. Kohler, G.; Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975, 256, 495-497.
9. http://cdnet.stpi.org.tw/techroom/market/bio/bio031.htm. 單株抗體治療藥物.
10. Druker, B. J. Inhibition of the Bcr-Abl tyrosine kinase as a therapeutic strategy for CML. Oncogene 2002, 21, 8541-8546.
11. Neidle, S. Cancer Drug Design and Discovery. Elsevier: London, 2008.
12. Folkman, J. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995, 1, 27-31.
13. http://www.tmn.idv.tw/tcfund/medecine/nm_42.htm. TNFerade 基因療法治療癌症之曙光.
14. http://www.medicalnewstoday.com/articles/129264.php. TNFerade□ Receives FDA Fast Track Designation For Treatment Of Pancreatic Cancer.
15. Normanno, N.; De Luca, A.; Bianco, C.; Strizzi, L.; Mancino, M.; Maiello, M. R.; Carotenuto, A.; De Feo, G.; Caponigro, F.; Salomon, D. S. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 2006, 366, 2-16.
16. Liu, Y.; Gray, N. S., Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Bio.l 2006, 2, 358-364.
17. Backes, A.; Zech, B.; Felber, B.; Klebl, B.; M□ller, G., Small-molecule inhibitors binding to protein kinases. Part I: exceptions from the traditional pharmacophore approach of type I inhibition. Expert Opinion on Drug Discovery 2008, 3, 1409-1425.
18. Backes, A.; Zech, B.; Felber, B.; Klebl, B.; M□ller, G. Small-molecule inhibitors binding to protein kinase. Part II: the novel pharmacophore approach of type II and type III inhibition. Expert Opin. Drug Discov. 2008, 3, 1427-1449.
19. Ghose, A. K.; Herbertz, T.; Pippin, D. A.; Salvino, J. M.; Mallamo, J. P. Knowledge based prediction of ligand binding modes and rational inhibitor design for kinase drug discovery. J. Med. Chem. 2008, 51, 5149-5171.
20. Li, R.; Stafford, J. A. Kinase Inhibitor Drugs; Wiley: New Jersey, 2009.
21. Wu, H. C.; Chang, D. K.; Huang, C. T., Targeted Therapy for Cancer. J. Cancer Mol. 2006, 2, 57-66.
22. Nyati, M. K.; Morgan, M. A.; Feng, F. Y.; Lawrence, T. S. Integration of EGFR inhibitors with radiochemotherapy. Nat. Rev. Cancer 2006, 6, 876-885.
23. Herbst, R. S.; Heymach, J. V.; Lippman, S. M. Lung cancer. N. Engl. J. Med. 2008, 359, 1367-1380.
24. Zhang, X.; Gureasko, J.; Shen, K.; Cole, P. A.; Kuriyan, J. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell 2006, 125, 1137-1149.
25. Katarzyna, K. Adaptor Proteins in Regulation of Receptor Endocytosis. 2004.
26. Vivanco, I.; Sawyers, C. L. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2002, 2, 489-501.
27. Bianco, R.; Gelardi, T.; Damiano, V.; Ciardiello, F.; Tortora, G. Rational bases for the development of EGFR inhibitors for cancer treatment. Int. J. Biochem. Cell Biol. 2007, 39, 1416-1431.
28. Katan, M. Families of phosphoinositide-specific phospholipase C: structure and function. Biochim. Biophys. Acta. 1998, 1436, 5-17.
29. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2000, 103 211-225.
30. Aaronson, D. S.; Horvath, C. M. A Road Map for Those Who Don't Know JAK-STAT. Science 2002, 296, 1653-1655.
31. Salomon, D. S.; Brandt, R.; Ciardiello, F.; Normanno, N. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit. Rev. Oncol. Hematol. 1995, 19, 183-232.
32. Sequist, L. V.; Bell, D. W.; Lynch, T. J.; Haber, D. A. Molecular predictors of response to epidermal growth factor receptor antagonists in non-small-cell lung cancer. J. Clin. Oncol. 2007, 25, 587-595.
33. Huang, S. F.; Liu, H. P.; Li, L. H.; Ku, Y. C.; Fu, Y. N.; Tsai, H. Y.; Chen, Y. T.; Lin, Y. F.; Chang, W. C.; Kuo, H. P.; Wu, Y. C.; Chen, Y. R.; Tsai, S. F. High frequency of epidermal growth factor receptor mutations with complex patterns in non-small cell lung cancers related to gefitinib responsiveness in Taiwan. Clin. Cancer Res. 2004, 10, 8195-8203.
34. Sharma, S. V.; Bell, D. W.; Settleman, J.; Haber, D. A. Epidermal growth factor receptor mutations in lung cancer. Nat. Rev. Cancer 2007, 7, 169-181.
35. http://enews.nhri.org.tw/enews_list_new2.php?volume_indx=78&showx=show
article&article_indx=2156&enews_dt=2004-12-21. 國家衛生研究院電子報 第78期:肺癌基因突變研究成果發表.
36. http://enews.nhri.org.tw/enews_list_new2.php?volume_indx=177&showx=show
article&article_indx=4000&enews_dt=2006-11-22. 國家衛生研究院電子報第177期:肺癌基因突變和肺癌標靶治療藥物吉菲特尼(gefitinib)療效之新進展.
37. Kobayashi, S.; Boggon, T. J.; Dayaram, T.; Janne, P. A.; Kocher, O.; Meyerson, M.; Johnson, B. E.; Eck, M. J.; Tenen, D. G.; Halmos, B. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 2005, 352, 786-792.
38. Pao, W.; Miller, V. A.; Politi, K. A.; Riely, G. J.; Somwar, R.; Zakowski, M. F.; Kris, M. G.; Varmus, H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005, 2, 225-235.
39. Yun, C. H.; Mengwasser, K. E.; Toms, A. V.; Woo, M. S.; Greulich, H.; Wong, K. K.; Meyerson, M.; Eck, M. J. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 2070-2075.
40. Fry, D. W.; Bridges, A. J.; Denny, W. A.; Doherty, A.; Greis, K. D.; Hicks, J. L.; Hook, K. E.; Keller, P. R.; Leopold, W. R.; Loo, J. A.; McNamara, D. J.; Nelson, J. M.; Sherwood, V.; Smaill, J. B.; Trumpp-Kallmeyer, S.; Dobrusin, E. M. Specific, irreversible inactivation of the epidermal growth factor receptor and erbB2, by a new class of tyrosine kinase inhibitor. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 12022-12027.
41. Cohen, M. S.; Zhang, C.; Shokat, K. M.; Taunton, J. Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 2005, 308, 1318-1321.
42. Pan, Z.; Scheerens, H.; Li, S.-J.; Schultz, B. E.; Sprengeler, P. A.; Burrill, L. C.; Mendonca, R. V.; Sweeney, M. D.; Scott, K. C. K.; Grothaus, P. G.; Jeffery, D. A.; Spoerke, J. M.; Honigberg, L. A.; Young, P. R.; Dalrymple, S. A.; Palmer, J. T. Discovery of Selective Irreversible Inhibitors for Bruton’s Tyrosine Kinase. ChemMedChem 2007, 2, 58-61.
43. Adjei, A. A. Epidermal growth factor receptor tyrosine kinase inhibitors in cancer therapy. Drugs of the Future 2001, 26, 1087-1092.
44. Jiang, H. Overview of gefitinib in non-small cell lung cancer: an Asian perspective. Jpn. J. Clin. Oncol. 2009, 39, 137-150.
45. Norman, P. Kinase Therapeutics: Pipeline Assessment and Commercial Prospects Report. Insight Pharma Reports; Cambridge Healthech Institute (CHI): 2010.
46. Ng, S. S.; Tsao, M. S.; Nicklee, T.; Hedley, D. W. Effects of the epidermal growth factor receptor inhibitor OSI-774, Tarceva, on downstream signaling pathways and apoptosis in human pancreatic adenocarcinoma. Mol. Cancer Ther. 2002, 1, 777-783.
47. Comis, R. L. The Current Situation: Erlotinib (Tarceva□) and Gefitinib (Iressa□) in Non-Small Cell Lung Cancer. Oncologist 2005, 10, 467-470.
48. Rigas, J. R. Erlotinib in non-small cell lung cancer. Community Oncol. 2005, 2, 205-209.
49. Spector, N. L.; Xia, W.; Burris, H., III; Hurwitz, H.; Dees, E. C.; Dowlati, A.; O'Neil, B.; Overmoyer, B.; Marcom, P. K.; Blackwell, K. L.; Smith, D. A.; Koch, K. M.; Stead, A.; Mangum, S.; Ellis, M. J.; Liu, L.; Man, A. K.; Bremer, T. M.; Harris, J.; Bacus, S. Study of the Biologic Effects of Lapatinib, a Reversible Inhibitor of ErbB1 and ErbB2 Tyrosine Kinases, on Tumor Growth and Survival Pathways in Patients With Advanced Malignancies. J. Clin. Oncol. 2005, 23, 2502-2512.
50. Morabito, A.; Piccirillo, M. C.; Falasconi, F.; De Feo, G.; Del Giudice, A.; Bryce, J.; Di Maio, M.; De Maio, E.; Normanno, N.; Perrone, F. Vandetanib (ZD6474), a Dual Inhibitor of Vascular Endothelial Growth Factor Receptor (VEGFR) and Epidermal Growth Factor Receptor (EGFR) Tyrosine Kinases: Current Status and Future Directions. Oncologist 2009, 14, 378-390.
51. Traxler, P.; Allegrini, P. R.; Brandt, R.; Brueggen, J.; Cozens, R.; Fabbro, D.; Grosios, K.; Lane, H. A.; McSheehy, P.; Mestan, J.; Meyer, T.; Tang, C.; Wartmann, M.; Wood, J.; Caravatti, G. AEE788: a dual family epidermal growth factor receptor/ErbB2 and vascular endothelial growth factor receptor tyrosine kinase inhibitor with antitumor and antiangiogenic activity. Cancer Res. 2004, 64, 4931-4941.
52. Juengel, E.; Engler, J.; Natsheh, I.; Jones, J.; Mickuckyte, A.; Hudak, L.; Jonas, D.; Blaheta, R. A. Combining the receptor tyrosine kinase inhibitor AEE788 and the mammalian target of rapamycin (mTOR) inhibitor RAD001 strongly inhibits adhesion and growth of renal cell carcinoma cells. BMC Cancer 2009, 9, 161.
53. Gravalos, C.; Cassinello, J.; Fernandez-Ranada, I.; Holgado, E. Role of tyrosine kinase inhibitors in the treatment of advanced colorectal cancer. Clin. Colorectal Cancer 2007, 6, 691-699.
54. Wong, T. W. L., F. Y.; Feng, C. U.; Luo, R.; Oppenheimer, S.; Zhang, H. J.; Smykla, R. A.; Mastalerz, H.; Fink, B. E.; Hunt, J. T.; Gavai, A. V.; and Vite. G. D. Preclinical AntitumorActivity of BMS-599626 a pan-HER Kinase Inhibitor That Inhibits HER1HER2 Homodimer and Heterodimer Signaling. Clin. Cancer Res. 2006, 12, 6186-6193.
55. Gendreau, S. B.; Ventura, R.; Keast, P.; Laird, A. D.; Yakes, F. M.; Zhang, W.; Bentzien, F.; Cancilla, B.; Lutman, J.; Chu, F.; Jackman, L.; Shi, Y.; Yu, P.; Wang, J.; Aftab, D. T.; Jaeger, C. T.; Meyer, S. M.; De Costa, A.; Engell, K.; Chen, J.; Martini, J. F.; Joly, A. H. Inhibition of the T790M gatekeeper mutant of the epidermal growth factor receptor by EXEL-7647. Clin. Cancer Res. 2007, 13, 3713-3723.
56. Mukherji, D.; Spicer, J., Second-generation epidermal growth factor tyrosine kinase inhibitors in non-small cell lung cancer. Expert Opin. Investig. Drugs 2009, 18, 293-301.
57. Janne, P. A.; von Pawel, J.; Cohen, R. B.; Crino, L.; Butts, C. A.; Olson, S. S.; Eiseman, I. A.; Chiappori, A. A.; Yeap, B. Y.; Lenehan, P. F.; Dasse, K.; Sheeran, M.; Bonomi, P. D. Multicenter, Randomized, Phase II Trial of CI-1033, an Irreversible Pan-ERBB Inhibitor, for Previously Treated Advanced Non Small-Cell Lung Cancer. J. Clin. Oncol. 2007, 25, 3936-3944.
58. Nyati, M. K.; Maheshwari, D.; Hanasoge, S.; Sreekumar, A.; Rynkiewicz, S. D.; Chinnaiyan, A. M.; Leopold, W. R.; Ethier, S. P.; Lawrence, T. S. Radiosensitization by pan ErbB inhibitor CI-1033 in vitro and in vivo. Clin. Cancer Res. 2004, 10, 691-700.
59. Yoshimura, N.; Kudoh, S.; Kimura, T.; Mitsuoka, S.; Matsuura, K.; Hirata, K.; Matsui, K.; Negoro, S.; Nakagawa, K.; Fukuoka, M. EKB-569, a new irreversible epidermal growth factor receptor tyrosine kinase inhibitor, with clinical activity in patients with non-small cell lung cancer with acquired resistance to gefitinib. Lung Cancer 2006, 51, 363-368.
60. http://clinicaltrials.gov/ct2/home. 美國國家衛生院(NIH)網站.
61. Kwak, E. L.; Sordella, R.; Bell, D. W.; Godin-Heymann, N.; Okimoto, R. A.; Brannigan, B. W.; Harris, P. L.; Driscoll, D. R.; Fidias, P.; Lynch, T. J.; Rabindran, S. K.; McGinnis, J. P.; Wissner, A.; Sharma, S. V.; Isselbacher, K. J.; Settleman, J.; Haber, D. A. Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 7665-7670.
62. Rabindran, S. K.; Discafani, C. M.; Rosfjord, E. C.; Baxter, M.; Floyd, M. B.; Golas, J.; Hallett, W. A.; Johnson, B. D.; Nilakantan, R.; Overbeek, E.; Reich, M. F.; Shen, R.; Shi, X.; Tsou, H. R.; Wang, Y. F.; Wissner, A. Antitumor activity of HKI-272, an orally active, irreversible inhibitor of the HER-2 tyrosine kinase. Cancer Res. 2004, 64, 3958-3965.
63. Li, D.; Shimamura, T.; Ji, H.; Chen, L.; Haringsma, H. J.; McNamara, K.; Liang, M. C.; Perera, S. A.; Zaghlul, S.; Borgman, C. L.; Kubo, S.; Takahashi, M.; Sun, Y.; Chirieac, L. R.; Padera, R. F.; Lindeman, N. I.; Janne, P. A.; Thomas, R. K.; Meyerson, M. L.; Eck, M. J.; Engelman, J. A.; Shapiro, G. I.; Wong, K. K. Bronchial and peripheral murine lung carcinomas induced by T790M-L858R mutant EGFR respond to HKI-272 and rapamycin combination therapy. Cancer Cell 2007, 12, 81-93.
64. Discafani, C. M.; Carroll, M. L.; Floyd, M. B., Jr.; Hollander, I. J.; Husain, Z.; Johnson, B. D.; Kitchen, D.; May, M. K.; Malo, M. S.; Minnick, A. A., Jr.; Nilakantan, R.; Shen, R.; Wang, Y. F.; Wissner, A.; Greenberger, L. M. Irreversible inhibition of epidermal growth factor receptor tyrosine kinase with in vivo activity by N-[4-[(3-bromophenyl)amino]-6-quinazolinyl]-2-butynamide (CL-387,785). Biochem. Pharmacol. 1999, 57, 917-925.
65. Eskens, F. A.; Mom, C. H.; Planting, A. S.; Gietema, J. A.; Amelsberg, A.; Huisman, H.; van Doorn, L.; Burger, H.; Stopfer, P.; Verweij, J.; de Vries, E. G. A phase I dose escalation study of BIBW 2992, an irreversible dual inhibitor of epidermal growth factor receptor 1 (EGFR) and 2 (HER2) tyrosine kinase in a 2-week on, 2-week off schedule in patients with advanced solid tumours. Br. J. Cancer 2008, 98, 80-85.
66. Li, D.; Ambrogio, L.; Shimamura, T.; Kubo, S.; Takahashi, M.; Chirieac, L. R.; Padera, R. F.; Shapiro, G. I.; Baum, A.; Himmelsbach, F.; Rettig, W. J.; Meyerson, M.; Solca, F.; Greulich, H.; Wong, K. K. BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models. Oncogene 2008, 27, 4702-4711.
67. http://www.esmo.org/events/milan-2010-congress/news/view.html?tx_ttnews%5
Btt_news%5D=966&tx_ttnews%5BbackPid%5D=1798&cHash=ae58373bfc. Afatinib benefits lung cancer patients whose cancer progressed after treatment with EGFR inhibitors.
68. WHO, International Nonproprietary Names for Pharmaceutical Substances (INN). WHO Drug Information 2010, 24 (2), 125-198.
69. http://chembl.blogspot.com/ The CHEMBL-OG-Open Data For Drug Discovery.
70. http://chicago2010.asco.org/Home.aspx. The American Society of Clinical Oncology 2010 annual meeting.
71. Suzuki, T.; Fujii, A.; Ohya, J.; Amano, Y.; Kitano, Y.; Abe, D.; Nakamura, H. Pharmacological characterization of MP-412 (AV-412), a dual epidermal growth factor receptor and ErbB2 tyrosine kinase inhibitor. Cancer Sci. 2007, 98, 1977-1984.
72. Hickinson, D. M.; Klinowska, T.; Speake, G.; Vincent, J.; Trigwell, C.; Anderton, J.; Beck, S.; Marshall, G.; Davenport, S.; Callis, R.; Mills, E.; Grosios, K.; Smith, P.; Barlaam, B.; Wilkinson, R. W.; Ogilvie, D. AZD8931, an equipotent, reversible inhibitor of signaling by epidermal growth factor receptor, ERBB2 (HER2), and ERBB3: a unique agent for simultaneous ERBB receptor blockade in cancer. Clin. Cancer Res. 2010, 16, 1159-1169.
73. Sequist, L. V. Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer. Oncologist 2007, 12, 325-330.
74. de La Motte Rouge, T.; Galluzzi, L.; Olaussen, K. A.; Zermati, Y.; Tasdemir, E.; Robert, T.; Ripoche, H.; Lazar, V.; Dessen, P.; Harper, F.; Pierron, G.; Pinna, G.; Araujo, N.; Harel-Belan, A.; Armand, J. P.; Wong, T. W.; Soria, J. C.; Kroemer, G. A novel epidermal growth factor receptor inhibitor promotes apoptosis in non-small cell lung cancer cells resistant to erlotinib. Cancer Res. 2007, 67, 6253-6262.
75. Wissner, A.; Overbeek, E.; Reich, M. F.; Floyd, M. B.; Johnson, B. D.; Mamuya, N.; Rosfjord, E. C.; Discafani, C.; Davis, R.; Shi, X.; Rabindran, S. K.; Gruber, B. C.; Ye, F.; Hallett, W. A.; Nilakantan, R.; Shen, R.; Wang, Y.-F.; Greenberger, L. M.; Tsou, H.-R. Synthesis and Structure−Activity Relationships of 6,7-Disubstituted 4-Anilinoquinoline-3-carbonitriles. The Design of an Orally Active, Irreversible Inhibitor of the Tyrosine Kinase Activity of the Epidermal Growth Factor Receptor (EGFR) and the Human Epidermal Growth Factor Receptor-2 (HER-2). J. Med. Chem. 2002, 46, 49-63.
76. Giaccone, G. Second-Generation Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitors. Advances in Lung Cancer 2007, 7, 9-13.
77. Wang, Y. N.; Ding, L. M.; Tan, F. L.; Hu, Y. Y.; He, W.; Han, B.; Long, W.; Liu, Y. Icotinib Hydrochlorides, Synthesis, Crystallographic Form, Medical Combination, and Uses Thereof. PCT Appl. CN2009/000773, Jan 14, 2010.
78. http://www.arraybiopharma.com/PatentsPublications/Default.asp?PBCategoryI
D=3&Year=2010.
79. Lai, C. J.; Bao, R.; Tao, X.; Wang, J.; Atoyan, R.; Qu, H.; Wang, D. G.; Yin, L.; Samson, M.; Forrester, J.; Zifcak, B.; Xu, G. X.; DellaRocca, S.; Zhai, H. X.; Cai, X.; Munger, W. E.; Keegan, M.; Pepicelli, C. V.; Qian, C. CUDC-101, a multitargeted inhibitor of histone deacetylase, epidermal growth factor receptor, and human epidermal growth factor receptor 2, exerts potent anticancer activity. Cancer Res. 2010, 70, 3647-3656.
80. Konings, I. R.; de Jonge, M. J.; Burger, H.; van der Gaast, A.; van Beijsterveldt, L. E.; Winkler, H.; Verweij, J.; Yuan, Z.; Hellemans, P.; Eskens, F. A. Phase I and pharmacological study of the broad-spectrum tyrosine kinase inhibitor JNJ-26483327 in patients with advanced solid tumours. Br. J. Cancer 2010, 103, 987-992.
81. Bruns, C. J.; Solorzano, C. C.; Harbison, M. T.; Ozawa, S.; Tsan, R.; Fan, D.; Abbruzzese, J.; Traxler, P.; Buchdunger, E.; Radinsky, R.; Fidler, I. J. Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma. Cancer Res. 2000, 60, 2926-2935.
82. Zhou, W.; Ercan, D.; Chen, L.; Yun, C. H.; Li, D.; Capelletti, M.; Cortot, A. B.; Chirieac, L.; Iacob, R. E.; Padera, R.; Engen, J. R.; Wong, K. K.; Eck, M. J.; Gray, N. S.; Janne, P. A. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature 2009, 462, 1070-1074.
83. Lin, W. H.; Song, J. S.; Chang, T. Y.; Chang, C. Y.; Fu, Y. N.; Yeh, C. L.; Wu, S. H.; Huang, Y. W.; Fang, M. Y.; Lien, T. W.; Hsieh, H. P.; Chao, Y. S.; Huang, S. F.; Tsai, S. F.; Wang, L. M.; Hsu, J. T.; Chen, Y. R. A cell-based high-throughput screen for epidermal growth factor receptor pathway inhibitors. Anal. Biochem. 2008, 377, 89-94.
84. Gomi, K.; Kajiyama, N. Oxyluciferin, a Luminescence Product of Firefly Luciferase, Is Enzymatically Regenerated into Luciferin. J. Biol. Chem. 2001, 276, 36508-36513.
85. Gewald, K. Zur Reaktion von α-Oxo-mercaptanen mit Nitrilen. Angewandte Chemie 1961, 73 (3), 114-114.
86. Zita Puterova, A. K. a. D. V. Gewald reaction: synthesis, properties and applications of substituted 2-aminothiophenes. ARKIVOC 2010, 209-246.
87. Sabnis, R. W.; Rangnekar, D. W.; Sonawane, N. D. 2-aminothiophenes by the gewald reaction. J. Heterocyclic Chem. 1999, 36, 333-345.
88. Von Niementowski, S. Synthesen von Chinazolinverbindungen. Journal f□r Praktische Chemie 1895, 51, 564-572.
89. Hesse, S.; Perspicace, E.; Kirsch, G. Microwave-assisted synthesis of 2-aminothiophene-3-carboxylic acid derivatives, 3H-thieno[2,3-d]pyrimidin-4-
one and 4-chlorothieno[2,3-d]pyrimidine. Tetrahedron Lett. 2007, 48, 5261-5264.
90. SALAHUDDIN, M.; KAKAD, S.; SHANTAKUMAR, S. M. Synthesis of Some Novel Thieno[2, 3-d] pyrimidines and their Antibacterial Activity. E. J. Chem. 2009, 6, 801-808.
91. Barnes, D. M.; Haight, A. R.; Hameury, T.; McLaughlin, M. A.; Mei, J.; Tedrow, J. S.; Riva Toma, J. D. New conditions for the synthesis of thiophenes via the Knoevenagel/Gewald reaction sequence. Application to the synthesis of a multitargeted kinase inhibitor. Tetrahedron 2006, 62, 11311-11319.
92. Hwang, K.-J.; Lee, T.-S.; Kim, K.-W.; Kim, B.-T.; Lee, C.-M.; Park, E.-Y.; Woo, R.-S. 4-Hydroxy-6-Oxo-6,7-Dihydro-Thieno[2,3-b] pyrimidine derivatives: Synthesis and their biological evaluation for the glycine site acting on the N-Methyl-D-aspartate (NMDA) receptor. Arch. Pharm. Res. 2001, 24, 270-275.
93. Huang, Y.; Domling, A. The Gewald multicomponent reaction. Mol. Divers. 2010, 1-31.
94. M□ller, C. E.; Geis, U.; Grahner, B.; Lanzner, W.; Eger, K. Chiral pyrrolo[2,3-d]pyrimidine and pyrimido[4,5-b]indole derivatives: structure-activity relationships of potent, highly stereoselective A1-adenosine receptor antagonists. J. Med. Chem. 1996, 39, 2482-2491.
95. DiMauro, E. F.; Newcomb, J.; Nunes, J. J.; Bemis, J. E.; Boucher, C.; Buchanan, J. L.; Buckner, W. H.; Cheng, A.; Faust, T.; Hsieh, F.; Huang, X.; Lee, J. H.; Marshall, T. L.; Martin, M. W.; McGowan, D. C.; Schneider, S.; Turci, S. M.; White, R. D.; Zhu, X. Discovery of 4-amino-5,6-biaryl-furo[2,3-d]pyrimidines as inhibitors of Lck: Development of an expedient and divergent synthetic route and preliminary SAR. Bioorg. Med. Chem. Lett. 2007, 17, 2305-2309.
96. Selles Patrice; Wailes Jeffrey Steven; Whittingham William Guy; Daniel, C. E. FUNGICIDES. PCT Appl. GB2004/004429, May 19, 2005.
97. Lima, L. M.; Barreiro, E. J. Bioisosterism: a useful strategy for molecular modification and drug design. Curr. Med. Chem. 2005, 12, 23-49.
98. Hagmann, W. K. The many roles for fluorine in medicinal chemistry. J. Med. Chem. 2008, 51, 4359-4369.
99. Coumar, M. S.; Chu, C. Y.; Lin, C. W.; Shiao, H. Y.; Ho, Y. L.; Reddy, R.; Lin, W. H.; Chen, C. H.; Peng, Y. H.; Leou, J. S.; Lien, T. W.; Huang, C. T.; Fang, M. Y.; Wu, S. H.; Wu, J. S.; Chittimalla, S. K.; Song, J. S.; Hsu, J. T.; Wu, S. Y.; Liao, C. C.; Chao, Y. S.; Hsieh, H. P. Fast-forwarding hit to lead: aurora and epidermal growth factor receptor kinase inhibitor lead identification. J. Med. Chem. 2010, 53, 4980-4998.
100. Wissner, A.; Mansour, T. S. The development of HKI-272 and related compounds for the treatment of cancer. Arch. Pharm. 2008, 341, 465-477.
101. Traxler, P.; Allegrini P. R.; Brandt, R.; Brueggen, J.; Cozens, R.; Fabbro, D.; Grosios, K.; Lane, H. A.; McSheehy, P.; Mestan, J.; Meyer, T.; Tang, C.; Wartmann, M.; Wood, J.; Caravatti, G. AEE788: A Dual Family Epidermal Growth Factor Receptor/ErbB2 and Vascular Endothelial Growth Factor Receptor Tyrosine Kinase Inhibitor with Antitumor and Antiangiogenic Activity. Cancer Res. 2004, 64, 4931–4941.
102. Bridges, A. J.; Cody, D. R.; Zhou, H.; McMichael, A.; Fry, D. W. Enantioselective inhibition of the epidermal growth factor receptor tyrosine kinase by 4-(alpha-phenethylamino)quinazolines. Bioorg. Med. Chem. 1995, 3, 1651-1656.
103. Hagmann, W. K. The many roles for fluorine in medicinal chemistry. J. Med. Chem. 2008, 51, 4359-4369.
104. Armarego, W. L. F.; Chai, C. Purification of Laboratory Chemicals; 4th. Ed. Pergamon Press: New York, 1996.